Intel® oneAPI Math Kernel Library (Intel® oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel® CPUs and GPUs.
Raw data
{
"_id": null,
"home_page": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html",
"name": "onemkl-sycl-datafitting",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Intel Corporation",
"author_email": "scripting@intel.com",
"download_url": null,
"platform": null,
"description": "Intel\u00ae oneAPI Math Kernel Library (Intel\u00ae oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel\u00ae CPUs and GPUs.\r\n\r\n",
"bugtrack_url": null,
"license": "Intel Simplified Software License",
"summary": "Intel\u00ae oneAPI Math Kernel Library",
"version": "2025.0.1",
"project_urls": {
"Homepage": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d60c8be694f7ab4e13474e7cc0bfd2a2be6ac683f40f2e37428a5cecf36b1138",
"md5": "89fbc4391a6ad47c02b368f6cfb8b6fd",
"sha256": "569b96d70c1221c6d238822017fe6dd1b13183faf9a86d642e127ee846de09a9"
},
"downloads": -1,
"filename": "onemkl_sycl_datafitting-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "89fbc4391a6ad47c02b368f6cfb8b6fd",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 1471772,
"upload_time": "2024-11-19T15:39:03",
"upload_time_iso_8601": "2024-11-19T15:39:03.131134Z",
"url": "https://files.pythonhosted.org/packages/d6/0c/8be694f7ab4e13474e7cc0bfd2a2be6ac683f40f2e37428a5cecf36b1138/onemkl_sycl_datafitting-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "71ac49f11b10a36622d5b83dbd5035e2bf66c476d4f7d603a872aa1ccfdc5523",
"md5": "b3ff89db4958321e98a46310e680f0ed",
"sha256": "0d668744ea008a4ffcbf04005350ff664ae33e6c429f48ad9b285f603899c851"
},
"downloads": -1,
"filename": "onemkl_sycl_datafitting-2025.0.1-py2.py3-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "b3ff89db4958321e98a46310e680f0ed",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 1148981,
"upload_time": "2024-11-19T15:37:21",
"upload_time_iso_8601": "2024-11-19T15:37:21.074032Z",
"url": "https://files.pythonhosted.org/packages/71/ac/49f11b10a36622d5b83dbd5035e2bf66c476d4f7d603a872aa1ccfdc5523/onemkl_sycl_datafitting-2025.0.1-py2.py3-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-19 15:39:03",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "onemkl-sycl-datafitting"
}