onetl


Nameonetl JSON
Version 0.12.5 PyPI version JSON
download
home_pagehttps://github.com/MobileTeleSystems/onetl
SummaryOne ETL tool to rule them all
upload_time2024-12-03 09:32:12
maintainerNone
docs_urlNone
authorDataOps.ETL
requires_python>=3.7
licenseApache-2.0
keywords spark etl jdbc hwm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. _readme:

onETL
=====

|Repo Status| |PyPI Latest Release| |PyPI License| |PyPI Python Version| |PyPI Downloads|
|Documentation| |CI Status| |Test Coverage| |pre-commit.ci Status|

.. |Repo Status| image:: https://www.repostatus.org/badges/latest/active.svg
    :alt: Repo status - Active
    :target: https://github.com/MobileTeleSystems/onetl
.. |PyPI Latest Release| image:: https://img.shields.io/pypi/v/onetl
    :alt: PyPI - Latest Release
    :target: https://pypi.org/project/onetl/
.. |PyPI License| image:: https://img.shields.io/pypi/l/onetl.svg
    :alt: PyPI - License
    :target: https://github.com/MobileTeleSystems/onetl/blob/develop/LICENSE.txt
.. |PyPI Python Version| image:: https://img.shields.io/pypi/pyversions/onetl.svg
    :alt: PyPI - Python Version
    :target: https://pypi.org/project/onetl/
.. |PyPI Downloads| image:: https://img.shields.io/pypi/dm/onetl
    :alt: PyPI - Downloads
    :target: https://pypi.org/project/onetl/
.. |Documentation| image:: https://readthedocs.org/projects/onetl/badge/?version=stable
    :alt: Documentation - ReadTheDocs
    :target: https://onetl.readthedocs.io/
.. |CI Status| image:: https://github.com/MobileTeleSystems/onetl/workflows/Tests/badge.svg
    :alt: Github Actions - latest CI build status
    :target: https://github.com/MobileTeleSystems/onetl/actions
.. |Test Coverage| image:: https://codecov.io/gh/MobileTeleSystems/onetl/branch/develop/graph/badge.svg?token=RIO8URKNZJ
    :alt: Test coverage - percent
    :target: https://codecov.io/gh/MobileTeleSystems/onetl
.. |pre-commit.ci Status| image:: https://results.pre-commit.ci/badge/github/MobileTeleSystems/onetl/develop.svg
    :alt: pre-commit.ci - status
    :target: https://results.pre-commit.ci/latest/github/MobileTeleSystems/onetl/develop

|Logo|

.. |Logo| image:: https://raw.githubusercontent.com/MobileTeleSystems/onetl/0.12.5/docs/_static/logo_wide.svg
    :alt: onETL logo
    :target: https://github.com/MobileTeleSystems/onetl

What is onETL?
--------------

Python ETL/ELT library powered by `Apache Spark <https://spark.apache.org/>`_ & other open-source tools.

Goals
-----

* Provide unified classes to extract data from (**E**) & load data to (**L**) various stores.
* Provides `Spark DataFrame API <https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html>`_ for performing transformations (**T**) in terms of *ETL*.
* Provide direct assess to database, allowing to execute SQL queries, as well as DDL, DML, and call functions/procedures. This can be used for building up *ELT* pipelines.
* Support different `read strategies <https://onetl.readthedocs.io/en/stable/strategy/index.html>`_ for incremental and batch data fetching.
* Provide `hooks <https://onetl.readthedocs.io/en/stable/hooks/index.html>`_ & `plugins <https://onetl.readthedocs.io/en/stable/plugins.html>`_ mechanism for altering behavior of internal classes.

Non-goals
---------

* onETL is not a Spark replacement. It just provides additional functionality that Spark does not have, and improves UX for end users.
* onETL is not a framework, as it does not have requirements to project structure, naming, the way of running ETL/ELT processes, configuration, etc. All of that should be implemented in some other tool.
* onETL is deliberately developed without any integration with scheduling software like Apache Airflow. All integrations should be implemented as separated tools.
* Only batch operations, no streaming. For streaming prefer `Apache Flink <https://flink.apache.org/>`_.

Requirements
------------

* **Python 3.7 - 3.12**
* PySpark 2.3.x - 3.5.x (depends on used connector)
* Java 8+ (required by Spark, see below)
* Kerberos libs & GCC (required by ``Hive``, ``HDFS`` and ``SparkHDFS`` connectors)

Supported storages
------------------

Database
~~~~~~~~

+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Type               | Storage      | Powered by                                                                                                              |
+====================+==============+=========================================================================================================================+
| Database           | Clickhouse   | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_                      |
+                    +--------------+                                                                                                                         +
|                    | MSSQL        |                                                                                                                         |
+                    +--------------+                                                                                                                         +
|                    | MySQL        |                                                                                                                         |
+                    +--------------+                                                                                                                         +
|                    | Postgres     |                                                                                                                         |
+                    +--------------+                                                                                                                         +
|                    | Oracle       |                                                                                                                         |
+                    +--------------+                                                                                                                         +
|                    | Teradata     |                                                                                                                         |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | Hive         | Apache Spark `Hive integration <https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html>`_               |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | Kafka        | Apache Spark `Kafka integration <https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html>`_    |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | Greenplum    | VMware `Greenplum Spark connector <https://docs.vmware.com/en/VMware-Greenplum-Connector-for-Apache-Spark/index.html>`_ |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | MongoDB      | `MongoDB Spark connector <https://www.mongodb.com/docs/spark-connector/current>`_                                       |
+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+
| File               | HDFS         | `HDFS Python client <https://pypi.org/project/hdfs/>`_                                                                  |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | S3           | `minio-py client <https://pypi.org/project/minio/>`_                                                                    |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | SFTP         | `Paramiko library <https://pypi.org/project/paramiko/>`_                                                                |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | FTP          | `FTPUtil library <https://pypi.org/project/ftputil/>`_                                                                  |
+                    +--------------+                                                                                                                         +
|                    | FTPS         |                                                                                                                         |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | WebDAV       | `WebdavClient3 library <https://pypi.org/project/webdavclient3/>`_                                                      |
+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | Samba        | `pysmb library <https://pypi.org/project/pysmb/>`_                                                                      |
+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Files as DataFrame | SparkLocalFS | Apache Spark `File Data Source <https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html>`_           |
|                    +--------------+                                                                                                                         +
|                    | SparkHDFS    |                                                                                                                         |
|                    +--------------+-------------------------------------------------------------------------------------------------------------------------+
|                    | SparkS3      | `Hadoop AWS <https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/index.html>`_ library                  |
+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+

.. documentation

Documentation
-------------

See https://onetl.readthedocs.io/

How to install
---------------

.. _install:

Minimal installation
~~~~~~~~~~~~~~~~~~~~

.. _minimal-install:

Base ``onetl`` package contains:

* ``DBReader``, ``DBWriter`` and related classes
* ``FileDownloader``, ``FileUploader``, ``FileMover`` and related classes, like file filters & limits
* ``FileDFReader``, ``FileDFWriter`` and related classes, like file formats
* Read Strategies & HWM classes
* Plugins support

It can be installed via:

.. code:: bash

    pip install onetl

.. warning::

    This method does NOT include any connections.

    This method is recommended for use in third-party libraries which require for ``onetl`` to be installed,
    but do not use its connection classes.

With DB and FileDF connections
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _spark-install:

All DB connection classes (``Clickhouse``, ``Greenplum``, ``Hive`` and others)
and all FileDF connection classes (``SparkHDFS``, ``SparkLocalFS``, ``SparkS3``)
require Spark to be installed.

.. _java-install:

Firstly, you should install JDK. The exact installation instruction depends on your OS, here are some examples:

.. code:: bash

    yum install java-1.8.0-openjdk-devel  # CentOS 7 + Spark 2
    dnf install java-11-openjdk-devel  # CentOS 8 + Spark 3
    apt-get install openjdk-11-jdk  # Debian-based + Spark 3

.. _spark-compatibility-matrix:

Compatibility matrix
^^^^^^^^^^^^^^^^^^^^

+--------------------------------------------------------------+-------------+-------------+-------+
| Spark                                                        | Python      | Java        | Scala |
+==============================================================+=============+=============+=======+
| `2.3.x <https://spark.apache.org/docs/2.3.1/#downloading>`_  | 3.7 only    | 8 only      | 2.11  |
+--------------------------------------------------------------+-------------+-------------+-------+
| `2.4.x <https://spark.apache.org/docs/2.4.8/#downloading>`_  | 3.7 only    | 8 only      | 2.11  |
+--------------------------------------------------------------+-------------+-------------+-------+
| `3.2.x <https://spark.apache.org/docs/3.2.4/#downloading>`_  | 3.7 - 3.10  | 8u201 - 11  | 2.12  |
+--------------------------------------------------------------+-------------+-------------+-------+
| `3.3.x <https://spark.apache.org/docs/3.3.4/#downloading>`_  | 3.7 - 3.10  | 8u201 - 17  | 2.12  |
+--------------------------------------------------------------+-------------+-------------+-------+
| `3.4.x <https://spark.apache.org/docs/3.4.3/#downloading>`_  | 3.7 - 3.12  | 8u362 - 20  | 2.12  |
+--------------------------------------------------------------+-------------+-------------+-------+
| `3.5.x <https://spark.apache.org/docs/3.5.3/#downloading>`_  | 3.8 - 3.12  | 8u371 - 20  | 2.12  |
+--------------------------------------------------------------+-------------+-------------+-------+

.. _pyspark-install:

Then you should install PySpark via passing ``spark`` to ``extras``:

.. code:: bash

    pip install onetl[spark]  # install latest PySpark

or install PySpark explicitly:

.. code:: bash

    pip install onetl pyspark==3.5.3  # install a specific PySpark version

or inject PySpark to ``sys.path`` in some other way BEFORE creating a class instance.
**Otherwise connection object cannot be created.**

With File connections
~~~~~~~~~~~~~~~~~~~~~

.. _files-install:

All File (but not *FileDF*) connection classes (``FTP``,  ``SFTP``, ``HDFS`` and so on) requires specific Python clients to be installed.

Each client can be installed explicitly by passing connector name (in lowercase) to ``extras``:

.. code:: bash

    pip install onetl[ftp]  # specific connector
    pip install onetl[ftp,ftps,sftp,hdfs,s3,webdav,samba]  # multiple connectors

To install all file connectors at once you can pass ``files`` to ``extras``:

.. code:: bash

    pip install onetl[files]

**Otherwise class import will fail.**

With Kerberos support
~~~~~~~~~~~~~~~~~~~~~

.. _kerberos-install:

Most of Hadoop instances set up with Kerberos support,
so some connections require additional setup to work properly.

* ``HDFS``
  Uses `requests-kerberos <https://pypi.org/project/requests-kerberos/>`_ and
  `GSSApi <https://pypi.org/project/gssapi/>`_ for authentication.
  It also uses ``kinit`` executable to generate Kerberos ticket.

* ``Hive`` and ``SparkHDFS``
  require Kerberos ticket to exist before creating Spark session.

So you need to install OS packages with:

* ``krb5`` libs
* Headers for ``krb5``
* ``gcc`` or other compiler for C sources

The exact installation instruction depends on your OS, here are some examples:

.. code:: bash

    dnf install krb5-devel gcc  # CentOS, OracleLinux
    apt install libkrb5-dev gcc  # Debian-based

Also you should pass ``kerberos`` to ``extras`` to install required Python packages:

.. code:: bash

    pip install onetl[kerberos]

Full bundle
~~~~~~~~~~~

.. _full-bundle:

To install all connectors and dependencies, you can pass ``all`` into ``extras``:

.. code:: bash

    pip install onetl[all]

    # this is just the same as
    pip install onetl[spark,files,kerberos]

.. warning::

    This method consumes a lot of disk space, and requires for Java & Kerberos libraries to be installed into your OS.

.. _quick-start:

Quick start
------------

MSSQL → Hive
~~~~~~~~~~~~

Read data from MSSQL, transform & write to Hive.

.. code:: bash

    # install onETL and PySpark
    pip install onetl[spark]

.. code:: python

    # Import pyspark to initialize the SparkSession
    from pyspark.sql import SparkSession

    # import function to setup onETL logging
    from onetl.log import setup_logging

    # Import required connections
    from onetl.connection import MSSQL, Hive

    # Import onETL classes to read & write data
    from onetl.db import DBReader, DBWriter

    # change logging level to INFO, and set up default logging format and handler
    setup_logging()

    # Initialize new SparkSession with MSSQL driver loaded
    maven_packages = MSSQL.get_packages()
    spark = (
        SparkSession.builder.appName("spark_app_onetl_demo")
        .config("spark.jars.packages", ",".join(maven_packages))
        .enableHiveSupport()  # for Hive
        .getOrCreate()
    )

    # Initialize MSSQL connection and check if database is accessible
    mssql = MSSQL(
        host="mssqldb.demo.com",
        user="onetl",
        password="onetl",
        database="Telecom",
        spark=spark,
        # These options are passed to MSSQL JDBC Driver:
        extra={"applicationIntent": "ReadOnly"},
    ).check()

    # >>> INFO:|MSSQL| Connection is available

    # Initialize DBReader
    reader = DBReader(
        connection=mssql,
        source="dbo.demo_table",
        columns=["on", "etl"],
        # Set some MSSQL read options:
        options=MSSQL.ReadOptions(fetchsize=10000),
    )

    # checks that there is data in the table, otherwise raises exception
    reader.raise_if_no_data()

    # Read data to DataFrame
    df = reader.run()
    df.printSchema()
    # root
    #  |-- id: integer (nullable = true)
    #  |-- phone_number: string (nullable = true)
    #  |-- region: string (nullable = true)
    #  |-- birth_date: date (nullable = true)
    #  |-- registered_at: timestamp (nullable = true)
    #  |-- account_balance: double (nullable = true)

    # Apply any PySpark transformations
    from pyspark.sql.functions import lit

    df_to_write = df.withColumn("engine", lit("onetl"))
    df_to_write.printSchema()
    # root
    #  |-- id: integer (nullable = true)
    #  |-- phone_number: string (nullable = true)
    #  |-- region: string (nullable = true)
    #  |-- birth_date: date (nullable = true)
    #  |-- registered_at: timestamp (nullable = true)
    #  |-- account_balance: double (nullable = true)
    #  |-- engine: string (nullable = false)

    # Initialize Hive connection
    hive = Hive(cluster="rnd-dwh", spark=spark)

    # Initialize DBWriter
    db_writer = DBWriter(
        connection=hive,
        target="dl_sb.demo_table",
        # Set some Hive write options:
        options=Hive.WriteOptions(if_exists="replace_entire_table"),
    )

    # Write data from DataFrame to Hive
    db_writer.run(df_to_write)

    # Success!

SFTP → HDFS
~~~~~~~~~~~

Download files from SFTP & upload them to HDFS.

.. code:: bash

    # install onETL with SFTP and HDFS clients, and Kerberos support
    pip install onetl[hdfs,sftp,kerberos]

.. code:: python

    # import function to setup onETL logging
    from onetl.log import setup_logging

    # Import required connections
    from onetl.connection import SFTP, HDFS

    # Import onETL classes to download & upload files
    from onetl.file import FileDownloader, FileUploader

    # import filter & limit classes
    from onetl.file.filter import Glob, ExcludeDir
    from onetl.file.limit import MaxFilesCount

    # change logging level to INFO, and set up default logging format and handler
    setup_logging()

    # Initialize SFTP connection and check it
    sftp = SFTP(
        host="sftp.test.com",
        user="someuser",
        password="somepassword",
    ).check()

    # >>> INFO:|SFTP| Connection is available

    # Initialize downloader
    file_downloader = FileDownloader(
        connection=sftp,
        source_path="/remote/tests/Report",  # path on SFTP
        local_path="/local/onetl/Report",  # local fs path
        filters=[
            # download only files matching the glob
            Glob("*.csv"),
            # exclude files from this directory
            ExcludeDir("/remote/tests/Report/exclude_dir/"),
        ],
        limits=[
            # download max 1000 files per run
            MaxFilesCount(1000),
        ],
        options=FileDownloader.Options(
            # delete files from SFTP after successful download
            delete_source=True,
            # mark file as failed if it already exist in local_path
            if_exists="error",
        ),
    )

    # Download files to local filesystem
    download_result = downloader.run()

    # Method run returns a DownloadResult object,
    # which contains collection of downloaded files, divided to 4 categories
    download_result

    #  DownloadResult(
    #      successful=[
    #          LocalPath('/local/onetl/Report/file_1.json'),
    #          LocalPath('/local/onetl/Report/file_2.json'),
    #      ],
    #      failed=[FailedRemoteFile('/remote/onetl/Report/file_3.json')],
    #      ignored=[RemoteFile('/remote/onetl/Report/file_4.json')],
    #      missing=[],
    #  )

    # Raise exception if there are failed files, or there were no files in the remote filesystem
    download_result.raise_if_failed() or download_result.raise_if_empty()

    # Do any kind of magic with files: rename files, remove header for csv files, ...
    renamed_files = my_rename_function(download_result.success)

    # function removed "_" from file names
    # [
    #    LocalPath('/home/onetl/Report/file1.json'),
    #    LocalPath('/home/onetl/Report/file2.json'),
    # ]

    # Initialize HDFS connection
    hdfs = HDFS(
        host="my.name.node",
        user="someuser",
        password="somepassword",  # or keytab
    )

    # Initialize uploader
    file_uploader = FileUploader(
        connection=hdfs,
        target_path="/user/onetl/Report/",  # hdfs path
    )

    # Upload files from local fs to HDFS
    upload_result = file_uploader.run(renamed_files)

    # Method run returns a UploadResult object,
    # which contains collection of uploaded files, divided to 4 categories
    upload_result

    #  UploadResult(
    #      successful=[RemoteFile('/user/onetl/Report/file1.json')],
    #      failed=[FailedLocalFile('/local/onetl/Report/file2.json')],
    #      ignored=[],
    #      missing=[],
    #  )

    # Raise exception if there are failed files, or there were no files in the local filesystem, or some input file is missing
    upload_result.raise_if_failed() or upload_result.raise_if_empty() or upload_result.raise_if_missing()

    # Success!


S3 → Postgres
~~~~~~~~~~~~~~~~

Read files directly from S3 path, convert them to dataframe, transform it and then write to a database.

.. code:: bash

    # install onETL and PySpark
    pip install onetl[spark]

.. code:: python

    # Import pyspark to initialize the SparkSession
    from pyspark.sql import SparkSession

    # import function to setup onETL logging
    from onetl.log import setup_logging

    # Import required connections
    from onetl.connection import Postgres, SparkS3

    # Import onETL classes to read files
    from onetl.file import FileDFReader
    from onetl.file.format import CSV

    # Import onETL classes to write data
    from onetl.db import DBWriter

    # change logging level to INFO, and set up default logging format and handler
    setup_logging()

    # Initialize new SparkSession with Hadoop AWS libraries and Postgres driver loaded
    maven_packages = SparkS3.get_packages(spark_version="3.5.3") + Postgres.get_packages()
    spark = (
        SparkSession.builder.appName("spark_app_onetl_demo")
        .config("spark.jars.packages", ",".join(maven_packages))
        .getOrCreate()
    )

    # Initialize S3 connection and check it
    spark_s3 = SparkS3(
        host="s3.test.com",
        protocol="https",
        bucket="my-bucket",
        access_key="somekey",
        secret_key="somesecret",
        # Access bucket as s3.test.com/my-bucket
        extra={"path.style.access": True},
        spark=spark,
    ).check()

    # >>> INFO:|SparkS3| Connection is available

    # Describe file format and parsing options
    csv = CSV(
        delimiter=";",
        header=True,
        encoding="utf-8",
    )

    # Describe DataFrame schema of files
    from pyspark.sql.types import (
        DateType,
        DoubleType,
        IntegerType,
        StringType,
        StructField,
        StructType,
        TimestampType,
    )

    df_schema = StructType(
        [
            StructField("id", IntegerType()),
            StructField("phone_number", StringType()),
            StructField("region", StringType()),
            StructField("birth_date", DateType()),
            StructField("registered_at", TimestampType()),
            StructField("account_balance", DoubleType()),
        ],
    )

    # Initialize file df reader
    reader = FileDFReader(
        connection=spark_s3,
        source_path="/remote/tests/Report",  # path on S3 there *.csv files are located
        format=csv,  # file format with specific parsing options
        df_schema=df_schema,  # columns & types
    )

    # Read files directly from S3 as Spark DataFrame
    df = reader.run()

    # Check that DataFrame schema is same as expected
    df.printSchema()
    # root
    #  |-- id: integer (nullable = true)
    #  |-- phone_number: string (nullable = true)
    #  |-- region: string (nullable = true)
    #  |-- birth_date: date (nullable = true)
    #  |-- registered_at: timestamp (nullable = true)
    #  |-- account_balance: double (nullable = true)

    # Apply any PySpark transformations
    from pyspark.sql.functions import lit

    df_to_write = df.withColumn("engine", lit("onetl"))
    df_to_write.printSchema()
    # root
    #  |-- id: integer (nullable = true)
    #  |-- phone_number: string (nullable = true)
    #  |-- region: string (nullable = true)
    #  |-- birth_date: date (nullable = true)
    #  |-- registered_at: timestamp (nullable = true)
    #  |-- account_balance: double (nullable = true)
    #  |-- engine: string (nullable = false)

    # Initialize Postgres connection
    postgres = Postgres(
        host="192.169.11.23",
        user="onetl",
        password="somepassword",
        database="mydb",
        spark=spark,
    )

    # Initialize DBWriter
    db_writer = DBWriter(
        connection=postgres,
        # write to specific table
        target="public.my_table",
        # with some writing options
        options=Postgres.WriteOptions(if_exists="append"),
    )

    # Write DataFrame to Postgres table
    db_writer.run(df_to_write)

    # Success!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MobileTeleSystems/onetl",
    "name": "onetl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "Spark, ETL, JDBC, HWM",
    "author": "DataOps.ETL",
    "author_email": "onetools@mts.ru",
    "download_url": "https://files.pythonhosted.org/packages/cb/07/ff156d837332346a4ebc82acbc3331051225e12156c6eada671f9d3acc8d/onetl-0.12.5.tar.gz",
    "platform": null,
    "description": ".. _readme:\n\nonETL\n=====\n\n|Repo Status| |PyPI Latest Release| |PyPI License| |PyPI Python Version| |PyPI Downloads|\n|Documentation| |CI Status| |Test Coverage| |pre-commit.ci Status|\n\n.. |Repo Status| image:: https://www.repostatus.org/badges/latest/active.svg\n    :alt: Repo status - Active\n    :target: https://github.com/MobileTeleSystems/onetl\n.. |PyPI Latest Release| image:: https://img.shields.io/pypi/v/onetl\n    :alt: PyPI - Latest Release\n    :target: https://pypi.org/project/onetl/\n.. |PyPI License| image:: https://img.shields.io/pypi/l/onetl.svg\n    :alt: PyPI - License\n    :target: https://github.com/MobileTeleSystems/onetl/blob/develop/LICENSE.txt\n.. |PyPI Python Version| image:: https://img.shields.io/pypi/pyversions/onetl.svg\n    :alt: PyPI - Python Version\n    :target: https://pypi.org/project/onetl/\n.. |PyPI Downloads| image:: https://img.shields.io/pypi/dm/onetl\n    :alt: PyPI - Downloads\n    :target: https://pypi.org/project/onetl/\n.. |Documentation| image:: https://readthedocs.org/projects/onetl/badge/?version=stable\n    :alt: Documentation - ReadTheDocs\n    :target: https://onetl.readthedocs.io/\n.. |CI Status| image:: https://github.com/MobileTeleSystems/onetl/workflows/Tests/badge.svg\n    :alt: Github Actions - latest CI build status\n    :target: https://github.com/MobileTeleSystems/onetl/actions\n.. |Test Coverage| image:: https://codecov.io/gh/MobileTeleSystems/onetl/branch/develop/graph/badge.svg?token=RIO8URKNZJ\n    :alt: Test coverage - percent\n    :target: https://codecov.io/gh/MobileTeleSystems/onetl\n.. |pre-commit.ci Status| image:: https://results.pre-commit.ci/badge/github/MobileTeleSystems/onetl/develop.svg\n    :alt: pre-commit.ci - status\n    :target: https://results.pre-commit.ci/latest/github/MobileTeleSystems/onetl/develop\n\n|Logo|\n\n.. |Logo| image:: https://raw.githubusercontent.com/MobileTeleSystems/onetl/0.12.5/docs/_static/logo_wide.svg\n    :alt: onETL logo\n    :target: https://github.com/MobileTeleSystems/onetl\n\nWhat is onETL?\n--------------\n\nPython ETL/ELT library powered by `Apache Spark <https://spark.apache.org/>`_ & other open-source tools.\n\nGoals\n-----\n\n* Provide unified classes to extract data from (**E**) & load data to (**L**) various stores.\n* Provides `Spark DataFrame API <https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html>`_ for performing transformations (**T**) in terms of *ETL*.\n* Provide direct assess to database, allowing to execute SQL queries, as well as DDL, DML, and call functions/procedures. This can be used for building up *ELT* pipelines.\n* Support different `read strategies <https://onetl.readthedocs.io/en/stable/strategy/index.html>`_ for incremental and batch data fetching.\n* Provide `hooks <https://onetl.readthedocs.io/en/stable/hooks/index.html>`_ & `plugins <https://onetl.readthedocs.io/en/stable/plugins.html>`_ mechanism for altering behavior of internal classes.\n\nNon-goals\n---------\n\n* onETL is not a Spark replacement. It just provides additional functionality that Spark does not have, and improves UX for end users.\n* onETL is not a framework, as it does not have requirements to project structure, naming, the way of running ETL/ELT processes, configuration, etc. All of that should be implemented in some other tool.\n* onETL is deliberately developed without any integration with scheduling software like Apache Airflow. All integrations should be implemented as separated tools.\n* Only batch operations, no streaming. For streaming prefer `Apache Flink <https://flink.apache.org/>`_.\n\nRequirements\n------------\n\n* **Python 3.7 - 3.12**\n* PySpark 2.3.x - 3.5.x (depends on used connector)\n* Java 8+ (required by Spark, see below)\n* Kerberos libs & GCC (required by ``Hive``, ``HDFS`` and ``SparkHDFS`` connectors)\n\nSupported storages\n------------------\n\nDatabase\n~~~~~~~~\n\n+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+\n| Type               | Storage      | Powered by                                                                                                              |\n+====================+==============+=========================================================================================================================+\n| Database           | Clickhouse   | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_                      |\n+                    +--------------+                                                                                                                         +\n|                    | MSSQL        |                                                                                                                         |\n+                    +--------------+                                                                                                                         +\n|                    | MySQL        |                                                                                                                         |\n+                    +--------------+                                                                                                                         +\n|                    | Postgres     |                                                                                                                         |\n+                    +--------------+                                                                                                                         +\n|                    | Oracle       |                                                                                                                         |\n+                    +--------------+                                                                                                                         +\n|                    | Teradata     |                                                                                                                         |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | Hive         | Apache Spark `Hive integration <https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html>`_               |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | Kafka        | Apache Spark `Kafka integration <https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html>`_    |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | Greenplum    | VMware `Greenplum Spark connector <https://docs.vmware.com/en/VMware-Greenplum-Connector-for-Apache-Spark/index.html>`_ |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | MongoDB      | `MongoDB Spark connector <https://www.mongodb.com/docs/spark-connector/current>`_                                       |\n+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+\n| File               | HDFS         | `HDFS Python client <https://pypi.org/project/hdfs/>`_                                                                  |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | S3           | `minio-py client <https://pypi.org/project/minio/>`_                                                                    |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | SFTP         | `Paramiko library <https://pypi.org/project/paramiko/>`_                                                                |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | FTP          | `FTPUtil library <https://pypi.org/project/ftputil/>`_                                                                  |\n+                    +--------------+                                                                                                                         +\n|                    | FTPS         |                                                                                                                         |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | WebDAV       | `WebdavClient3 library <https://pypi.org/project/webdavclient3/>`_                                                      |\n+                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | Samba        | `pysmb library <https://pypi.org/project/pysmb/>`_                                                                      |\n+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+\n| Files as DataFrame | SparkLocalFS | Apache Spark `File Data Source <https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html>`_           |\n|                    +--------------+                                                                                                                         +\n|                    | SparkHDFS    |                                                                                                                         |\n|                    +--------------+-------------------------------------------------------------------------------------------------------------------------+\n|                    | SparkS3      | `Hadoop AWS <https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/index.html>`_ library                  |\n+--------------------+--------------+-------------------------------------------------------------------------------------------------------------------------+\n\n.. documentation\n\nDocumentation\n-------------\n\nSee https://onetl.readthedocs.io/\n\nHow to install\n---------------\n\n.. _install:\n\nMinimal installation\n~~~~~~~~~~~~~~~~~~~~\n\n.. _minimal-install:\n\nBase ``onetl`` package contains:\n\n* ``DBReader``, ``DBWriter`` and related classes\n* ``FileDownloader``, ``FileUploader``, ``FileMover`` and related classes, like file filters & limits\n* ``FileDFReader``, ``FileDFWriter`` and related classes, like file formats\n* Read Strategies & HWM classes\n* Plugins support\n\nIt can be installed via:\n\n.. code:: bash\n\n    pip install onetl\n\n.. warning::\n\n    This method does NOT include any connections.\n\n    This method is recommended for use in third-party libraries which require for ``onetl`` to be installed,\n    but do not use its connection classes.\n\nWith DB and FileDF connections\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. _spark-install:\n\nAll DB connection classes (``Clickhouse``, ``Greenplum``, ``Hive`` and others)\nand all FileDF connection classes (``SparkHDFS``, ``SparkLocalFS``, ``SparkS3``)\nrequire Spark to be installed.\n\n.. _java-install:\n\nFirstly, you should install JDK. The exact installation instruction depends on your OS, here are some examples:\n\n.. code:: bash\n\n    yum install java-1.8.0-openjdk-devel  # CentOS 7 + Spark 2\n    dnf install java-11-openjdk-devel  # CentOS 8 + Spark 3\n    apt-get install openjdk-11-jdk  # Debian-based + Spark 3\n\n.. _spark-compatibility-matrix:\n\nCompatibility matrix\n^^^^^^^^^^^^^^^^^^^^\n\n+--------------------------------------------------------------+-------------+-------------+-------+\n| Spark                                                        | Python      | Java        | Scala |\n+==============================================================+=============+=============+=======+\n| `2.3.x <https://spark.apache.org/docs/2.3.1/#downloading>`_  | 3.7 only    | 8 only      | 2.11  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n| `2.4.x <https://spark.apache.org/docs/2.4.8/#downloading>`_  | 3.7 only    | 8 only      | 2.11  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n| `3.2.x <https://spark.apache.org/docs/3.2.4/#downloading>`_  | 3.7 - 3.10  | 8u201 - 11  | 2.12  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n| `3.3.x <https://spark.apache.org/docs/3.3.4/#downloading>`_  | 3.7 - 3.10  | 8u201 - 17  | 2.12  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n| `3.4.x <https://spark.apache.org/docs/3.4.3/#downloading>`_  | 3.7 - 3.12  | 8u362 - 20  | 2.12  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n| `3.5.x <https://spark.apache.org/docs/3.5.3/#downloading>`_  | 3.8 - 3.12  | 8u371 - 20  | 2.12  |\n+--------------------------------------------------------------+-------------+-------------+-------+\n\n.. _pyspark-install:\n\nThen you should install PySpark via passing ``spark`` to ``extras``:\n\n.. code:: bash\n\n    pip install onetl[spark]  # install latest PySpark\n\nor install PySpark explicitly:\n\n.. code:: bash\n\n    pip install onetl pyspark==3.5.3  # install a specific PySpark version\n\nor inject PySpark to ``sys.path`` in some other way BEFORE creating a class instance.\n**Otherwise connection object cannot be created.**\n\nWith File connections\n~~~~~~~~~~~~~~~~~~~~~\n\n.. _files-install:\n\nAll File (but not *FileDF*) connection classes (``FTP``,  ``SFTP``, ``HDFS`` and so on) requires specific Python clients to be installed.\n\nEach client can be installed explicitly by passing connector name (in lowercase) to ``extras``:\n\n.. code:: bash\n\n    pip install onetl[ftp]  # specific connector\n    pip install onetl[ftp,ftps,sftp,hdfs,s3,webdav,samba]  # multiple connectors\n\nTo install all file connectors at once you can pass ``files`` to ``extras``:\n\n.. code:: bash\n\n    pip install onetl[files]\n\n**Otherwise class import will fail.**\n\nWith Kerberos support\n~~~~~~~~~~~~~~~~~~~~~\n\n.. _kerberos-install:\n\nMost of Hadoop instances set up with Kerberos support,\nso some connections require additional setup to work properly.\n\n* ``HDFS``\n  Uses `requests-kerberos <https://pypi.org/project/requests-kerberos/>`_ and\n  `GSSApi <https://pypi.org/project/gssapi/>`_ for authentication.\n  It also uses ``kinit`` executable to generate Kerberos ticket.\n\n* ``Hive`` and ``SparkHDFS``\n  require Kerberos ticket to exist before creating Spark session.\n\nSo you need to install OS packages with:\n\n* ``krb5`` libs\n* Headers for ``krb5``\n* ``gcc`` or other compiler for C sources\n\nThe exact installation instruction depends on your OS, here are some examples:\n\n.. code:: bash\n\n    dnf install krb5-devel gcc  # CentOS, OracleLinux\n    apt install libkrb5-dev gcc  # Debian-based\n\nAlso you should pass ``kerberos`` to ``extras`` to install required Python packages:\n\n.. code:: bash\n\n    pip install onetl[kerberos]\n\nFull bundle\n~~~~~~~~~~~\n\n.. _full-bundle:\n\nTo install all connectors and dependencies, you can pass ``all`` into ``extras``:\n\n.. code:: bash\n\n    pip install onetl[all]\n\n    # this is just the same as\n    pip install onetl[spark,files,kerberos]\n\n.. warning::\n\n    This method consumes a lot of disk space, and requires for Java & Kerberos libraries to be installed into your OS.\n\n.. _quick-start:\n\nQuick start\n------------\n\nMSSQL \u2192 Hive\n~~~~~~~~~~~~\n\nRead data from MSSQL, transform & write to Hive.\n\n.. code:: bash\n\n    # install onETL and PySpark\n    pip install onetl[spark]\n\n.. code:: python\n\n    # Import pyspark to initialize the SparkSession\n    from pyspark.sql import SparkSession\n\n    # import function to setup onETL logging\n    from onetl.log import setup_logging\n\n    # Import required connections\n    from onetl.connection import MSSQL, Hive\n\n    # Import onETL classes to read & write data\n    from onetl.db import DBReader, DBWriter\n\n    # change logging level to INFO, and set up default logging format and handler\n    setup_logging()\n\n    # Initialize new SparkSession with MSSQL driver loaded\n    maven_packages = MSSQL.get_packages()\n    spark = (\n        SparkSession.builder.appName(\"spark_app_onetl_demo\")\n        .config(\"spark.jars.packages\", \",\".join(maven_packages))\n        .enableHiveSupport()  # for Hive\n        .getOrCreate()\n    )\n\n    # Initialize MSSQL connection and check if database is accessible\n    mssql = MSSQL(\n        host=\"mssqldb.demo.com\",\n        user=\"onetl\",\n        password=\"onetl\",\n        database=\"Telecom\",\n        spark=spark,\n        # These options are passed to MSSQL JDBC Driver:\n        extra={\"applicationIntent\": \"ReadOnly\"},\n    ).check()\n\n    # >>> INFO:|MSSQL| Connection is available\n\n    # Initialize DBReader\n    reader = DBReader(\n        connection=mssql,\n        source=\"dbo.demo_table\",\n        columns=[\"on\", \"etl\"],\n        # Set some MSSQL read options:\n        options=MSSQL.ReadOptions(fetchsize=10000),\n    )\n\n    # checks that there is data in the table, otherwise raises exception\n    reader.raise_if_no_data()\n\n    # Read data to DataFrame\n    df = reader.run()\n    df.printSchema()\n    # root\n    #  |-- id: integer (nullable = true)\n    #  |-- phone_number: string (nullable = true)\n    #  |-- region: string (nullable = true)\n    #  |-- birth_date: date (nullable = true)\n    #  |-- registered_at: timestamp (nullable = true)\n    #  |-- account_balance: double (nullable = true)\n\n    # Apply any PySpark transformations\n    from pyspark.sql.functions import lit\n\n    df_to_write = df.withColumn(\"engine\", lit(\"onetl\"))\n    df_to_write.printSchema()\n    # root\n    #  |-- id: integer (nullable = true)\n    #  |-- phone_number: string (nullable = true)\n    #  |-- region: string (nullable = true)\n    #  |-- birth_date: date (nullable = true)\n    #  |-- registered_at: timestamp (nullable = true)\n    #  |-- account_balance: double (nullable = true)\n    #  |-- engine: string (nullable = false)\n\n    # Initialize Hive connection\n    hive = Hive(cluster=\"rnd-dwh\", spark=spark)\n\n    # Initialize DBWriter\n    db_writer = DBWriter(\n        connection=hive,\n        target=\"dl_sb.demo_table\",\n        # Set some Hive write options:\n        options=Hive.WriteOptions(if_exists=\"replace_entire_table\"),\n    )\n\n    # Write data from DataFrame to Hive\n    db_writer.run(df_to_write)\n\n    # Success!\n\nSFTP \u2192 HDFS\n~~~~~~~~~~~\n\nDownload files from SFTP & upload them to HDFS.\n\n.. code:: bash\n\n    # install onETL with SFTP and HDFS clients, and Kerberos support\n    pip install onetl[hdfs,sftp,kerberos]\n\n.. code:: python\n\n    # import function to setup onETL logging\n    from onetl.log import setup_logging\n\n    # Import required connections\n    from onetl.connection import SFTP, HDFS\n\n    # Import onETL classes to download & upload files\n    from onetl.file import FileDownloader, FileUploader\n\n    # import filter & limit classes\n    from onetl.file.filter import Glob, ExcludeDir\n    from onetl.file.limit import MaxFilesCount\n\n    # change logging level to INFO, and set up default logging format and handler\n    setup_logging()\n\n    # Initialize SFTP connection and check it\n    sftp = SFTP(\n        host=\"sftp.test.com\",\n        user=\"someuser\",\n        password=\"somepassword\",\n    ).check()\n\n    # >>> INFO:|SFTP| Connection is available\n\n    # Initialize downloader\n    file_downloader = FileDownloader(\n        connection=sftp,\n        source_path=\"/remote/tests/Report\",  # path on SFTP\n        local_path=\"/local/onetl/Report\",  # local fs path\n        filters=[\n            # download only files matching the glob\n            Glob(\"*.csv\"),\n            # exclude files from this directory\n            ExcludeDir(\"/remote/tests/Report/exclude_dir/\"),\n        ],\n        limits=[\n            # download max 1000 files per run\n            MaxFilesCount(1000),\n        ],\n        options=FileDownloader.Options(\n            # delete files from SFTP after successful download\n            delete_source=True,\n            # mark file as failed if it already exist in local_path\n            if_exists=\"error\",\n        ),\n    )\n\n    # Download files to local filesystem\n    download_result = downloader.run()\n\n    # Method run returns a DownloadResult object,\n    # which contains collection of downloaded files, divided to 4 categories\n    download_result\n\n    #  DownloadResult(\n    #      successful=[\n    #          LocalPath('/local/onetl/Report/file_1.json'),\n    #          LocalPath('/local/onetl/Report/file_2.json'),\n    #      ],\n    #      failed=[FailedRemoteFile('/remote/onetl/Report/file_3.json')],\n    #      ignored=[RemoteFile('/remote/onetl/Report/file_4.json')],\n    #      missing=[],\n    #  )\n\n    # Raise exception if there are failed files, or there were no files in the remote filesystem\n    download_result.raise_if_failed() or download_result.raise_if_empty()\n\n    # Do any kind of magic with files: rename files, remove header for csv files, ...\n    renamed_files = my_rename_function(download_result.success)\n\n    # function removed \"_\" from file names\n    # [\n    #    LocalPath('/home/onetl/Report/file1.json'),\n    #    LocalPath('/home/onetl/Report/file2.json'),\n    # ]\n\n    # Initialize HDFS connection\n    hdfs = HDFS(\n        host=\"my.name.node\",\n        user=\"someuser\",\n        password=\"somepassword\",  # or keytab\n    )\n\n    # Initialize uploader\n    file_uploader = FileUploader(\n        connection=hdfs,\n        target_path=\"/user/onetl/Report/\",  # hdfs path\n    )\n\n    # Upload files from local fs to HDFS\n    upload_result = file_uploader.run(renamed_files)\n\n    # Method run returns a UploadResult object,\n    # which contains collection of uploaded files, divided to 4 categories\n    upload_result\n\n    #  UploadResult(\n    #      successful=[RemoteFile('/user/onetl/Report/file1.json')],\n    #      failed=[FailedLocalFile('/local/onetl/Report/file2.json')],\n    #      ignored=[],\n    #      missing=[],\n    #  )\n\n    # Raise exception if there are failed files, or there were no files in the local filesystem, or some input file is missing\n    upload_result.raise_if_failed() or upload_result.raise_if_empty() or upload_result.raise_if_missing()\n\n    # Success!\n\n\nS3 \u2192 Postgres\n~~~~~~~~~~~~~~~~\n\nRead files directly from S3 path, convert them to dataframe, transform it and then write to a database.\n\n.. code:: bash\n\n    # install onETL and PySpark\n    pip install onetl[spark]\n\n.. code:: python\n\n    # Import pyspark to initialize the SparkSession\n    from pyspark.sql import SparkSession\n\n    # import function to setup onETL logging\n    from onetl.log import setup_logging\n\n    # Import required connections\n    from onetl.connection import Postgres, SparkS3\n\n    # Import onETL classes to read files\n    from onetl.file import FileDFReader\n    from onetl.file.format import CSV\n\n    # Import onETL classes to write data\n    from onetl.db import DBWriter\n\n    # change logging level to INFO, and set up default logging format and handler\n    setup_logging()\n\n    # Initialize new SparkSession with Hadoop AWS libraries and Postgres driver loaded\n    maven_packages = SparkS3.get_packages(spark_version=\"3.5.3\") + Postgres.get_packages()\n    spark = (\n        SparkSession.builder.appName(\"spark_app_onetl_demo\")\n        .config(\"spark.jars.packages\", \",\".join(maven_packages))\n        .getOrCreate()\n    )\n\n    # Initialize S3 connection and check it\n    spark_s3 = SparkS3(\n        host=\"s3.test.com\",\n        protocol=\"https\",\n        bucket=\"my-bucket\",\n        access_key=\"somekey\",\n        secret_key=\"somesecret\",\n        # Access bucket as s3.test.com/my-bucket\n        extra={\"path.style.access\": True},\n        spark=spark,\n    ).check()\n\n    # >>> INFO:|SparkS3| Connection is available\n\n    # Describe file format and parsing options\n    csv = CSV(\n        delimiter=\";\",\n        header=True,\n        encoding=\"utf-8\",\n    )\n\n    # Describe DataFrame schema of files\n    from pyspark.sql.types import (\n        DateType,\n        DoubleType,\n        IntegerType,\n        StringType,\n        StructField,\n        StructType,\n        TimestampType,\n    )\n\n    df_schema = StructType(\n        [\n            StructField(\"id\", IntegerType()),\n            StructField(\"phone_number\", StringType()),\n            StructField(\"region\", StringType()),\n            StructField(\"birth_date\", DateType()),\n            StructField(\"registered_at\", TimestampType()),\n            StructField(\"account_balance\", DoubleType()),\n        ],\n    )\n\n    # Initialize file df reader\n    reader = FileDFReader(\n        connection=spark_s3,\n        source_path=\"/remote/tests/Report\",  # path on S3 there *.csv files are located\n        format=csv,  # file format with specific parsing options\n        df_schema=df_schema,  # columns & types\n    )\n\n    # Read files directly from S3 as Spark DataFrame\n    df = reader.run()\n\n    # Check that DataFrame schema is same as expected\n    df.printSchema()\n    # root\n    #  |-- id: integer (nullable = true)\n    #  |-- phone_number: string (nullable = true)\n    #  |-- region: string (nullable = true)\n    #  |-- birth_date: date (nullable = true)\n    #  |-- registered_at: timestamp (nullable = true)\n    #  |-- account_balance: double (nullable = true)\n\n    # Apply any PySpark transformations\n    from pyspark.sql.functions import lit\n\n    df_to_write = df.withColumn(\"engine\", lit(\"onetl\"))\n    df_to_write.printSchema()\n    # root\n    #  |-- id: integer (nullable = true)\n    #  |-- phone_number: string (nullable = true)\n    #  |-- region: string (nullable = true)\n    #  |-- birth_date: date (nullable = true)\n    #  |-- registered_at: timestamp (nullable = true)\n    #  |-- account_balance: double (nullable = true)\n    #  |-- engine: string (nullable = false)\n\n    # Initialize Postgres connection\n    postgres = Postgres(\n        host=\"192.169.11.23\",\n        user=\"onetl\",\n        password=\"somepassword\",\n        database=\"mydb\",\n        spark=spark,\n    )\n\n    # Initialize DBWriter\n    db_writer = DBWriter(\n        connection=postgres,\n        # write to specific table\n        target=\"public.my_table\",\n        # with some writing options\n        options=Postgres.WriteOptions(if_exists=\"append\"),\n    )\n\n    # Write DataFrame to Postgres table\n    db_writer.run(df_to_write)\n\n    # Success!\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "One ETL tool to rule them all",
    "version": "0.12.5",
    "project_urls": {
        "CI/CD": "https://github.com/MobileTeleSystems/onetl/actions",
        "Documentation": "https://onetl.readthedocs.io/",
        "Homepage": "https://github.com/MobileTeleSystems/onetl",
        "Source": "https://github.com/MobileTeleSystems/onetl",
        "Tracker": "https://github.com/MobileTeleSystems/onetl/issues"
    },
    "split_keywords": [
        "spark",
        " etl",
        " jdbc",
        " hwm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e53ee808d9a077afa86f3114ed7a2ba867633dce377c438deaa8935dd543f19f",
                "md5": "bca970b9d39d85dc382568dc9ce1c2dc",
                "sha256": "395868cc3fbb751056b951b4fec26ef754ad53e55e2a3ca1f7894102869efbc5"
            },
            "downloads": -1,
            "filename": "onetl-0.12.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bca970b9d39d85dc382568dc9ce1c2dc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 339149,
            "upload_time": "2024-12-03T09:32:10",
            "upload_time_iso_8601": "2024-12-03T09:32:10.568098Z",
            "url": "https://files.pythonhosted.org/packages/e5/3e/e808d9a077afa86f3114ed7a2ba867633dce377c438deaa8935dd543f19f/onetl-0.12.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb07ff156d837332346a4ebc82acbc3331051225e12156c6eada671f9d3acc8d",
                "md5": "8142515b6d0f157f2cd2040a2682baae",
                "sha256": "02447817d24c5bff7b9872ebd4deec1a6fe13f01821de9569661b1d70a06fc79"
            },
            "downloads": -1,
            "filename": "onetl-0.12.5.tar.gz",
            "has_sig": false,
            "md5_digest": "8142515b6d0f157f2cd2040a2682baae",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 228070,
            "upload_time": "2024-12-03T09:32:12",
            "upload_time_iso_8601": "2024-12-03T09:32:12.977365Z",
            "url": "https://files.pythonhosted.org/packages/cb/07/ff156d837332346a4ebc82acbc3331051225e12156c6eada671f9d3acc8d/onetl-0.12.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-03 09:32:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MobileTeleSystems",
    "github_project": "onetl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "onetl"
}
        
Elapsed time: 0.39795s