onnx-predict-yolov8


Nameonnx-predict-yolov8 JSON
Version 1.0.6 PyPI version JSON
download
home_page
Summary
upload_time2023-06-12 12:55:48
maintainer
docs_urlNone
author
requires_python<3.12,>=3.8
licenseMIT License Copyright (c) 2023 Aalborg University Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords onnx yolov8 onnxruntime vision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ONNX-PREDICT-YOLOV8
This repository is a light weight library to ease the use of ONNX models exported by the Ultralytics YOLOv8 framework.

## Example Usage
```python
from onnxruntime import InferenceSession
from PIL import Image
from opyv8 import Predictor

model = Path("path/to/file.onnx")
# List of classes where the index match the class id in the ONNX network
classes = model.parent.joinpath("classes.names").read_text().split("\n")
session = InferenceSession(
    model.as_posix(),
    providers=[
        "CUDAExecutionProvider",
        "CPUExecutionProvider",
    ],
)
predictor = Predictor(session, classes)
img = Image.open("path/to/image.jpg")
print(predictor.predict(img))
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "onnx-predict-yolov8",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": "Kasper Fromm Pedersen <kasperf@cs.aau.dk>",
    "keywords": "ONNX,YOLOv8,onnxruntime,vision",
    "author": "",
    "author_email": "Kasper Fromm Pedersen <kasperf@cs.aau.dk>, Kristian Torp <torp@cs.aau.dk>",
    "download_url": "https://files.pythonhosted.org/packages/4e/cc/0c88095ab89d7e2cd8f490045ae4ba021dbe54869612dc550c6916a96a36/onnx-predict-yolov8-1.0.6.tar.gz",
    "platform": null,
    "description": "# ONNX-PREDICT-YOLOV8\nThis repository is a light weight library to ease the use of ONNX models exported by the Ultralytics YOLOv8 framework.\n\n## Example Usage\n```python\nfrom onnxruntime import InferenceSession\nfrom PIL import Image\nfrom opyv8 import Predictor\n\nmodel = Path(\"path/to/file.onnx\")\n# List of classes where the index match the class id in the ONNX network\nclasses = model.parent.joinpath(\"classes.names\").read_text().split(\"\\n\")\nsession = InferenceSession(\n    model.as_posix(),\n    providers=[\n        \"CUDAExecutionProvider\",\n        \"CPUExecutionProvider\",\n    ],\n)\npredictor = Predictor(session, classes)\nimg = Image.open(\"path/to/image.jpg\")\nprint(predictor.predict(img))\n```\n",
    "bugtrack_url": null,
    "license": "MIT License\n        \n        Copyright (c) 2023 Aalborg University\n        \n        Permission is hereby granted, free of charge, to any person obtaining a copy\n        of this software and associated documentation files (the \"Software\"), to deal\n        in the Software without restriction, including without limitation the rights\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n        copies of the Software, and to permit persons to whom the Software is\n        furnished to do so, subject to the following conditions:\n        \n        The above copyright notice and this permission notice shall be included in all\n        copies or substantial portions of the Software.\n        \n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n        SOFTWARE.\n        ",
    "summary": "",
    "version": "1.0.6",
    "project_urls": {
        "homepage": "https://www.cs.aau.dk/",
        "repository": "https://github.com/fromm1990/onnx-predict-yolov8"
    },
    "split_keywords": [
        "onnx",
        "yolov8",
        "onnxruntime",
        "vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3a224698f38bac087ad68c0a6feed9460d868c6c9ecf663dce85c16456b08eee",
                "md5": "500ff88aecc7a0068e94e178780f46f8",
                "sha256": "a0de24a7f84fdd4cef6a79549ad87ad001f9a69962dd8553e89b31e393cc9c91"
            },
            "downloads": -1,
            "filename": "onnx_predict_yolov8-1.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "500ff88aecc7a0068e94e178780f46f8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 6063,
            "upload_time": "2023-06-12T12:55:44",
            "upload_time_iso_8601": "2023-06-12T12:55:44.950962Z",
            "url": "https://files.pythonhosted.org/packages/3a/22/4698f38bac087ad68c0a6feed9460d868c6c9ecf663dce85c16456b08eee/onnx_predict_yolov8-1.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4ecc0c88095ab89d7e2cd8f490045ae4ba021dbe54869612dc550c6916a96a36",
                "md5": "a9042c6baec26d34e0ccceca4c835c8d",
                "sha256": "04f06b5c191e18f3091e9f0251436eb97f8250c67ad88c76f9c838792c1acf27"
            },
            "downloads": -1,
            "filename": "onnx-predict-yolov8-1.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "a9042c6baec26d34e0ccceca4c835c8d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 4659,
            "upload_time": "2023-06-12T12:55:48",
            "upload_time_iso_8601": "2023-06-12T12:55:48.390101Z",
            "url": "https://files.pythonhosted.org/packages/4e/cc/0c88095ab89d7e2cd8f490045ae4ba021dbe54869612dc550c6916a96a36/onnx-predict-yolov8-1.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-12 12:55:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fromm1990",
    "github_project": "onnx-predict-yolov8",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "onnx-predict-yolov8"
}
        
Elapsed time: 0.19514s