# ONNX Simplifier
[![PyPI version](https://img.shields.io/pypi/v/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI license](https://img.shields.io/pypi/l/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/daquexian/onnx-simplifier/pulls)
_ONNX is great, but sometimes too complicated._
## Background
One day I wanted to export the following simple reshape operation to ONNX:
```python
import torch
class JustReshape(torch.nn.Module):
def __init__(self):
super(JustReshape, self).__init__()
def forward(self, x):
return x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))
net = JustReshape()
model_name = 'just_reshape.onnx'
dummy_input = torch.randn(2, 3, 4, 5)
torch.onnx.export(net, dummy_input, model_name, input_names=['input'], output_names=['output'])
```
The input shape in this model is static, so what I expected is
![simple_reshape](imgs/simple_reshape.png)
However, I got the following complicated model instead:
![complicated_reshape](imgs/complicated_reshape.png)
## Our solution
ONNX Simplifier is presented to simplify the ONNX model. It infers the whole computation graph
and then replaces the redundant operators with their constant outputs (a.k.a. constant folding).
### Web version
We have published ONNX Simplifier on [convertmodel.com](https://www.convertmodel.com/#input=onnx&output=onnx). It works out of the box and **doesn't need any installation**. Note that it runs in the browser locally and your model is completely safe.
### Python version
```
pip3 install -U pip && pip3 install onnxsim
```
Then
```
onnxsim input_onnx_model output_onnx_model
```
For more advanced features, try the following command for help message
```
onnxsim -h
```
## Demonstration
An overall comparison between
[a complicated model](https://github.com/JDAI-CV/DNNLibrary/issues/17#issuecomment-455934190)
and its simplified version:
![Comparison between old model and new model](imgs/comparison.png)
## In-script workflow
If you would like to embed ONNX simplifier python package in another script, it is just that simple.
```python
import onnx
from onnxsim import simplify
# load your predefined ONNX model
model = onnx.load(filename)
# convert model
model_simp, check = simplify(model)
assert check, "Simplified ONNX model could not be validated"
# use model_simp as a standard ONNX model object
```
You can see more details of the API in [onnxsim/onnx_simplifier.py](onnxsim/onnx_simplifier.py)
## Projects Using ONNX Simplifier
* [MXNet](https://mxnet.apache.org/versions/1.9.1/api/python/docs/tutorials/deploy/export/onnx.html#Simplify-the-exported-ONNX-model)
* [MMDetection](https://github.com/open-mmlab/mmdetection)
* [YOLOv5](https://github.com/ultralytics/yolov5)
* [ncnn](https://github.com/Tencent/ncnn)
* ...
## Chat
We created a Chinese QQ group for ONNX!
ONNX QQ Group (Chinese): 1021964010, verification code: nndab. Welcome to join!
For English users, I'm active on the [ONNX Slack](https://github.com/onnx/onnx#discuss). You can find and chat with me (daquexian) there.
Raw data
{
"_id": null,
"home_page": "https://github.com/daquexian/onnx-simplifier",
"name": "onnx-simplifier",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "deep-learning ONNX",
"author": "ONNX Simplifier Authors",
"author_email": "daquexian566@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/6a/95/9d93b8cfdd9f57abe7000cd6b9e56e2c518ce0e6bf6b312b1cf37b4e68a8/onnx-simplifier-0.4.36.tar.gz",
"platform": null,
"description": "# ONNX Simplifier\n\n[![PyPI version](https://img.shields.io/pypi/v/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)\n[![PyPI pyversions](https://img.shields.io/pypi/pyversions/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)\n[![PyPI license](https://img.shields.io/pypi/l/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/daquexian/onnx-simplifier/pulls)\n\n_ONNX is great, but sometimes too complicated._\n\n## Background\n\nOne day I wanted to export the following simple reshape operation to ONNX:\n\n```python\nimport torch\n\n\nclass JustReshape(torch.nn.Module):\n def __init__(self):\n super(JustReshape, self).__init__()\n\n def forward(self, x):\n return x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))\n\n\nnet = JustReshape()\nmodel_name = 'just_reshape.onnx'\ndummy_input = torch.randn(2, 3, 4, 5)\ntorch.onnx.export(net, dummy_input, model_name, input_names=['input'], output_names=['output'])\n```\n\nThe input shape in this model is static, so what I expected is\n\n![simple_reshape](imgs/simple_reshape.png)\n\nHowever, I got the following complicated model instead:\n\n![complicated_reshape](imgs/complicated_reshape.png)\n\n## Our solution\n\nONNX Simplifier is presented to simplify the ONNX model. It infers the whole computation graph\nand then replaces the redundant operators with their constant outputs (a.k.a. constant folding).\n\n### Web version\n\nWe have published ONNX Simplifier on [convertmodel.com](https://www.convertmodel.com/#input=onnx&output=onnx). It works out of the box and **doesn't need any installation**. Note that it runs in the browser locally and your model is completely safe.\n\n### Python version\n\n\n```\npip3 install -U pip && pip3 install onnxsim\n```\n\nThen\n\n```\nonnxsim input_onnx_model output_onnx_model\n```\n\nFor more advanced features, try the following command for help message\n\n```\nonnxsim -h\n```\n\n## Demonstration\n\nAn overall comparison between\n[a complicated model](https://github.com/JDAI-CV/DNNLibrary/issues/17#issuecomment-455934190)\nand its simplified version:\n\n![Comparison between old model and new model](imgs/comparison.png)\n\n## In-script workflow\n\nIf you would like to embed ONNX simplifier python package in another script, it is just that simple.\n\n```python\nimport onnx\nfrom onnxsim import simplify\n\n# load your predefined ONNX model\nmodel = onnx.load(filename)\n\n# convert model\nmodel_simp, check = simplify(model)\n\nassert check, \"Simplified ONNX model could not be validated\"\n\n# use model_simp as a standard ONNX model object\n```\n\nYou can see more details of the API in [onnxsim/onnx_simplifier.py](onnxsim/onnx_simplifier.py)\n\n## Projects Using ONNX Simplifier\n\n* [MXNet](https://mxnet.apache.org/versions/1.9.1/api/python/docs/tutorials/deploy/export/onnx.html#Simplify-the-exported-ONNX-model)\n* [MMDetection](https://github.com/open-mmlab/mmdetection)\n* [YOLOv5](https://github.com/ultralytics/yolov5)\n* [ncnn](https://github.com/Tencent/ncnn)\n* ...\n\n## Chat\n\nWe created a Chinese QQ group for ONNX!\n\nONNX QQ Group (Chinese): 1021964010, verification code: nndab. Welcome to join!\n\nFor English users, I'm active on the [ONNX Slack](https://github.com/onnx/onnx#discuss). You can find and chat with me (daquexian) there.\n",
"bugtrack_url": null,
"license": "Apache License v2.0",
"summary": "Simplify your ONNX model",
"version": "0.4.36",
"project_urls": {
"Homepage": "https://github.com/daquexian/onnx-simplifier"
},
"split_keywords": [
"deep-learning",
"onnx"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1e38d0cc8988ffe0fde0a83b21238558e5f4aaa19ddb73543537e4c7712ec20e",
"md5": "6a4b762d89355d2ded887d6668943641",
"sha256": "435e030a2247dda5f24cba0d1a44933a22d445f897477e0629104a897087f8ad"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp310-cp310-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "6a4b762d89355d2ded887d6668943641",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 3471392,
"upload_time": "2024-03-04T08:23:53",
"upload_time_iso_8601": "2024-03-04T08:23:53.911136Z",
"url": "https://files.pythonhosted.org/packages/1e/38/d0cc8988ffe0fde0a83b21238558e5f4aaa19ddb73543537e4c7712ec20e/onnx_simplifier-0.4.36-cp310-cp310-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fc8919043140183f932dd52dc3938d0fd310dd24144de04149c40c64f044d15c",
"md5": "4bd89a58d3f6f906453629299b6b42e5",
"sha256": "17a96fc4988bf9fc8a9ae1062e65fc67a905dd199c4094c1709b6972da1e3ef7"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "4bd89a58d3f6f906453629299b6b42e5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 2255368,
"upload_time": "2024-03-04T08:23:57",
"upload_time_iso_8601": "2024-03-04T08:23:57.174503Z",
"url": "https://files.pythonhosted.org/packages/fc/89/19043140183f932dd52dc3938d0fd310dd24144de04149c40c64f044d15c/onnx_simplifier-0.4.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "154bf522b1cdaf44670183dd52475698b74531f1a012212342cf5f77369f9b30",
"md5": "be4732efdb5e081ee69030ddee1203ec",
"sha256": "d360bc0b6a6393c6fd2066ab1e13176f2021b3e6211c05d68865091da0a17062"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "be4732efdb5e081ee69030ddee1203ec",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 1288746,
"upload_time": "2024-03-04T08:23:59",
"upload_time_iso_8601": "2024-03-04T08:23:59.803943Z",
"url": "https://files.pythonhosted.org/packages/15/4b/f522b1cdaf44670183dd52475698b74531f1a012212342cf5f77369f9b30/onnx_simplifier-0.4.36-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b8e38b4743d51a1659da7f7058c8034d858ded88f288d0d8e0a7bd7b2b647ca2",
"md5": "1be0636f472443b93919e5df8d319a18",
"sha256": "bed97c8fce059abdc6935e2c3f7b65ef43866269ef0049c7ec09a990ae578676"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp311-cp311-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "1be0636f472443b93919e5df8d319a18",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 3471354,
"upload_time": "2024-03-04T08:24:02",
"upload_time_iso_8601": "2024-03-04T08:24:02.852912Z",
"url": "https://files.pythonhosted.org/packages/b8/e3/8b4743d51a1659da7f7058c8034d858ded88f288d0d8e0a7bd7b2b647ca2/onnx_simplifier-0.4.36-cp311-cp311-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0616b19442a60f191f08ae3c4a04627faca12a06fcc9bb24b5accc446a5977b2",
"md5": "7a52502eaec3880a49e679d21ebac9c4",
"sha256": "b5d1c1f170fd9c07aa475d539e9e752aec352502aeaad7d5004fde7ffad2ca39"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7a52502eaec3880a49e679d21ebac9c4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 2255136,
"upload_time": "2024-03-04T08:24:05",
"upload_time_iso_8601": "2024-03-04T08:24:05.406033Z",
"url": "https://files.pythonhosted.org/packages/06/16/b19442a60f191f08ae3c4a04627faca12a06fcc9bb24b5accc446a5977b2/onnx_simplifier-0.4.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ae3819ae776bd80556e7336cab972db7cd2f111b6b3809de7e8deb7bc8125202",
"md5": "a9b9e10b14e68910ba784bc04e82aefb",
"sha256": "02a1a7d8573e9ef1c76cf9cad99a95d8dd508941518d0e00c00ef180f53783b4"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "a9b9e10b14e68910ba784bc04e82aefb",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 1288786,
"upload_time": "2024-03-04T08:24:07",
"upload_time_iso_8601": "2024-03-04T08:24:07.989817Z",
"url": "https://files.pythonhosted.org/packages/ae/38/19ae776bd80556e7336cab972db7cd2f111b6b3809de7e8deb7bc8125202/onnx_simplifier-0.4.36-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4552bf6c3cab13b88036bf363367c5caf87ffc33b2fbd23a2dbc2dff01c43da5",
"md5": "9638e47b785c573be43168521b87a596",
"sha256": "98256a79cfc7c4a6cf5ac93af567e7ebe14b933c535a9cc834245dce552b4901"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9638e47b785c573be43168521b87a596",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 2258478,
"upload_time": "2024-03-04T08:24:09",
"upload_time_iso_8601": "2024-03-04T08:24:09.707652Z",
"url": "https://files.pythonhosted.org/packages/45/52/bf6c3cab13b88036bf363367c5caf87ffc33b2fbd23a2dbc2dff01c43da5/onnx_simplifier-0.4.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bd258ba5df4c801866d4a77c0e4540fd9f0ae8a9859646369d77a0bd4a121312",
"md5": "fae394ccf178182a58feb3168f21e2e4",
"sha256": "fcf63bbc7f2135fe45f5d17c01e2ea3949427118fe64ecf970bd180c69b6cdd6"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "fae394ccf178182a58feb3168f21e2e4",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 1288918,
"upload_time": "2024-03-04T08:24:11",
"upload_time_iso_8601": "2024-03-04T08:24:11.573249Z",
"url": "https://files.pythonhosted.org/packages/bd/25/8ba5df4c801866d4a77c0e4540fd9f0ae8a9859646369d77a0bd4a121312/onnx_simplifier-0.4.36-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ea79c317d6ba049de4f7cd2401f13ce93255914c7d5ca14076a5f95ab38435f1",
"md5": "ae5eaacd1a1b2504aeac22b27bcbf403",
"sha256": "536785d665654eb0bf1c76c4778cc17770f58343afae8d5bfd441c55c3da7922"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp38-cp38-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "ae5eaacd1a1b2504aeac22b27bcbf403",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 3470990,
"upload_time": "2024-03-04T08:24:13",
"upload_time_iso_8601": "2024-03-04T08:24:13.572023Z",
"url": "https://files.pythonhosted.org/packages/ea/79/c317d6ba049de4f7cd2401f13ce93255914c7d5ca14076a5f95ab38435f1/onnx_simplifier-0.4.36-cp38-cp38-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0a24ed183f4aa7471b6378674172e13db69b136af718d4808fe7de0ae0a72bbd",
"md5": "a0c5dbe07c60a0db9a28701e1b57afb3",
"sha256": "27aaaee44fed3bd0d1c035c3e261939e2c10ed0bc5f19b396f2af5f2982eab52"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a0c5dbe07c60a0db9a28701e1b57afb3",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 2255107,
"upload_time": "2024-03-04T08:24:16",
"upload_time_iso_8601": "2024-03-04T08:24:16.273987Z",
"url": "https://files.pythonhosted.org/packages/0a/24/ed183f4aa7471b6378674172e13db69b136af718d4808fe7de0ae0a72bbd/onnx_simplifier-0.4.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b63496174583084c9227b630ea1fcf044da6abce7657b0d4c767f15cbf8fa85",
"md5": "cdd4ab765056c1b7aa265b00b03d97da",
"sha256": "646d58721469e3a2cbb28e443c02f4eec1a61ceb0b0f27f61a6ad1415eb0d3c8"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "cdd4ab765056c1b7aa265b00b03d97da",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 1288868,
"upload_time": "2024-03-04T08:24:19",
"upload_time_iso_8601": "2024-03-04T08:24:19.279098Z",
"url": "https://files.pythonhosted.org/packages/3b/63/496174583084c9227b630ea1fcf044da6abce7657b0d4c767f15cbf8fa85/onnx_simplifier-0.4.36-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "255aaa97696e71f603eeea949b68a1497782c8922ec2e44ff3532ff32517f06c",
"md5": "51ecbc04692cb321fa839c3b34a849f4",
"sha256": "ce57e54a7fe73a10feb698a35d7aa0e15dac8b5838a44a972a066ffeb5a75c6c"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp39-cp39-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "51ecbc04692cb321fa839c3b34a849f4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 3471550,
"upload_time": "2024-03-04T08:24:21",
"upload_time_iso_8601": "2024-03-04T08:24:21.266635Z",
"url": "https://files.pythonhosted.org/packages/25/5a/aa97696e71f603eeea949b68a1497782c8922ec2e44ff3532ff32517f06c/onnx_simplifier-0.4.36-cp39-cp39-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d4a5ea7c4591080aa4f104e0c98334635e321c300542be6641a71d3b3e734741",
"md5": "390ac85b385ae60d2315f9d53f1e8d5c",
"sha256": "1cbfa793ebea08d0d25685aea291910863e5f7b8dfc2f065bb5f05b76bb8ccf6"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "390ac85b385ae60d2315f9d53f1e8d5c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 2255741,
"upload_time": "2024-03-04T08:24:23",
"upload_time_iso_8601": "2024-03-04T08:24:23.155557Z",
"url": "https://files.pythonhosted.org/packages/d4/a5/ea7c4591080aa4f104e0c98334635e321c300542be6641a71d3b3e734741/onnx_simplifier-0.4.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a77ff1765d3464ab12f7e0b90418f84e07e509619dae0f7f155c51cd7dd7e4f9",
"md5": "4a8585088c4cde527f29c16a50256f01",
"sha256": "a0b6bb9df73f4578a2f75311b0b077f791d027e7f555eeb6582db7d45388daaf"
},
"downloads": -1,
"filename": "onnx_simplifier-0.4.36-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "4a8585088c4cde527f29c16a50256f01",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 1288285,
"upload_time": "2024-03-04T08:24:25",
"upload_time_iso_8601": "2024-03-04T08:24:25.032262Z",
"url": "https://files.pythonhosted.org/packages/a7/7f/f1765d3464ab12f7e0b90418f84e07e509619dae0f7f155c51cd7dd7e4f9/onnx_simplifier-0.4.36-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6a959d93b8cfdd9f57abe7000cd6b9e56e2c518ce0e6bf6b312b1cf37b4e68a8",
"md5": "9ba2171909a03ecf9fc8f735c8728a8f",
"sha256": "661b7383d0a6182b96489b60b36b30852fd4f6066cfbb298b20b2f5455167ff6"
},
"downloads": -1,
"filename": "onnx-simplifier-0.4.36.tar.gz",
"has_sig": false,
"md5_digest": "9ba2171909a03ecf9fc8f735c8728a8f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 20987619,
"upload_time": "2024-03-04T08:24:55",
"upload_time_iso_8601": "2024-03-04T08:24:55.173288Z",
"url": "https://files.pythonhosted.org/packages/6a/95/9d93b8cfdd9f57abe7000cd6b9e56e2c518ce0e6bf6b312b1cf37b4e68a8/onnx-simplifier-0.4.36.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-04 08:24:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "daquexian",
"github_project": "onnx-simplifier",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "onnx-simplifier"
}