<!--- SPDX-License-Identifier: Apache-2.0 -->
# ONNX Optimizer
[![PyPI version](https://img.shields.io/pypi/v/onnxoptimizer.svg)](https://pypi.python.org/pypi/onnxoptimizer/)
[![PyPI license](https://img.shields.io/pypi/l/onnxoptimizer.svg)](https://pypi.python.org/pypi/onnxoptimizer/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/onnx/optimizer/pulls)
## Introduction
ONNX provides a C++ library for performing arbitrary optimizations on ONNX models, as well as a growing list of prepackaged optimization passes.
The primary motivation is to share work between the many ONNX backend implementations. Not all possible optimizations can be directly implemented on ONNX graphs - some will need additional backend-specific information - but many can, and our aim is to provide all such passes along with ONNX so that they can be re-used with a single function call.
You may be interested in invoking the provided passes, or in implementing new ones (or both).
## Installation
You can install onnxoptimizer from PyPI:
```bash
pip3 install onnxoptimizer
```
Note that you may need to upgrade your pip first if you have trouble:
```bash
pip3 install -U pip
```
If you want to build from source:
```bash
git clone --recursive https://github.com/onnx/optimizer onnxoptimizer
cd onnxoptimizer
pip3 install -e .
```
Note that you need to install protobuf before building from source.
## Command-line API
Now you can use command-line api in terminal instead of python script.
```
python -m onnxoptimizer input_model.onnx output_model.onnx
```
Arguments list is following:
```
# python3 -m onnxoptimizer -h
usage: python -m onnxoptimizer input_model.onnx output_model.onnx
onnxoptimizer command-line api
optional arguments:
-h, --help show this help message and exit
--print_all_passes print all available passes
--print_fuse_elimination_passes
print all fuse and elimination passes
-p [PASSES ...], --passes [PASSES ...]
list of optimization passes name, if no set, fuse_and_elimination_passes will be used
--fixed_point fixed point
```
## Roadmap
* More built-in pass
* Separate graph rewriting and constant folding (or a pure graph rewriting mode, see [issue #9](https://github.com/onnx/optimizer/issues/9) for the details)
## Relevant tools
* [onnx-simplifier](https://github.com/daquexian/onnx-simplifier): A handy and popular tool based on onnxoptimizer
* [convertmodel.com](https://convertmodel.com/#outputFormat=onnx&inputFormat=onnx): onnx optimizer compiled as WebAssembly so that it can be used out-of-the-box
## Code of Conduct
[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)
Raw data
{
"_id": null,
"home_page": "https://github.com/onnx/optimizer",
"name": "onnxoptimizer",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "deep-learning ONNX",
"author": "ONNX Optimizer Authors",
"author_email": "onnx-technical-discuss@lists.lfai.foundation",
"download_url": "https://files.pythonhosted.org/packages/68/bd/e8671229c2f1f99eb02961cac51e55ca64dbbe0d62791b6743cc8b9950b1/onnxoptimizer-0.3.13.tar.gz",
"platform": null,
"description": "<!--- SPDX-License-Identifier: Apache-2.0 -->\n\n# ONNX Optimizer\n\n[![PyPI version](https://img.shields.io/pypi/v/onnxoptimizer.svg)](https://pypi.python.org/pypi/onnxoptimizer/)\n[![PyPI license](https://img.shields.io/pypi/l/onnxoptimizer.svg)](https://pypi.python.org/pypi/onnxoptimizer/)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/onnx/optimizer/pulls)\n\n## Introduction\n\nONNX provides a C++ library for performing arbitrary optimizations on ONNX models, as well as a growing list of prepackaged optimization passes.\n\nThe primary motivation is to share work between the many ONNX backend implementations. Not all possible optimizations can be directly implemented on ONNX graphs - some will need additional backend-specific information - but many can, and our aim is to provide all such passes along with ONNX so that they can be re-used with a single function call.\n\nYou may be interested in invoking the provided passes, or in implementing new ones (or both).\n\n## Installation\n\nYou can install onnxoptimizer from PyPI:\n\n```bash\npip3 install onnxoptimizer\n```\n\nNote that you may need to upgrade your pip first if you have trouble:\n\n```bash\npip3 install -U pip\n```\n\nIf you want to build from source:\n\n```bash\ngit clone --recursive https://github.com/onnx/optimizer onnxoptimizer\ncd onnxoptimizer\npip3 install -e .\n```\n\nNote that you need to install protobuf before building from source.\n\n\n## Command-line API\nNow you can use command-line api in terminal instead of python script.\n\n```\npython -m onnxoptimizer input_model.onnx output_model.onnx\n```\n\nArguments list is following:\n```\n# python3 -m onnxoptimizer -h \nusage: python -m onnxoptimizer input_model.onnx output_model.onnx \n\nonnxoptimizer command-line api\n\noptional arguments:\n -h, --help show this help message and exit\n --print_all_passes print all available passes\n --print_fuse_elimination_passes\n print all fuse and elimination passes\n -p [PASSES ...], --passes [PASSES ...]\n list of optimization passes name, if no set, fuse_and_elimination_passes will be used\n --fixed_point fixed point\n```\n## Roadmap\n\n* More built-in pass\n* Separate graph rewriting and constant folding (or a pure graph rewriting mode, see [issue #9](https://github.com/onnx/optimizer/issues/9) for the details)\n\n## Relevant tools\n\n* [onnx-simplifier](https://github.com/daquexian/onnx-simplifier): A handy and popular tool based on onnxoptimizer\n\n* [convertmodel.com](https://convertmodel.com/#outputFormat=onnx&inputFormat=onnx): onnx optimizer compiled as WebAssembly so that it can be used out-of-the-box\n\n## Code of Conduct\n\n[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)\n",
"bugtrack_url": null,
"license": "Apache License v2.0",
"summary": "Open Neural Network Exchange",
"version": "0.3.13",
"split_keywords": [
"deep-learning",
"onnx"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "333c8a8320e295f80ae268233e72a9ae81fd35f6f7a6d00fcc02d3b1186a19aa",
"md5": "6d65c122860c96aee7862ecade937623",
"sha256": "019968dc02b37ab87588b67331f15719a9fcfc5de54de866dd7b02eaad68bdd5"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp310-cp310-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "6d65c122860c96aee7862ecade937623",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 1014952,
"upload_time": "2023-04-19T14:51:22",
"upload_time_iso_8601": "2023-04-19T14:51:22.891459Z",
"url": "https://files.pythonhosted.org/packages/33/3c/8a8320e295f80ae268233e72a9ae81fd35f6f7a6d00fcc02d3b1186a19aa/onnxoptimizer-0.3.13-cp310-cp310-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "174d613b5ce51cccb0bf55502810400ed0966e61bd571f81d68e2d095d69635e",
"md5": "d40796909cf5df097a5c4f6203cf8c86",
"sha256": "542b43b13c3b1b7b72aae2579a2d75ef68dcf0513231bb1cb2b5f3c8af838d87"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp310-cp310-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "d40796909cf5df097a5c4f6203cf8c86",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 578199,
"upload_time": "2023-04-19T14:51:24",
"upload_time_iso_8601": "2023-04-19T14:51:24.314840Z",
"url": "https://files.pythonhosted.org/packages/17/4d/613b5ce51cccb0bf55502810400ed0966e61bd571f81d68e2d095d69635e/onnxoptimizer-0.3.13-cp310-cp310-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd0c1769400bafbc3797fe725fa29d66256a7944101d65590ebdaf867d3b81f3",
"md5": "8e8576e7021efb9e037cf92bde516570",
"sha256": "98716324135ac5505529423dbba5479273e6f46a0f895ac611a29ed8a6f79690"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8e8576e7021efb9e037cf92bde516570",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 678124,
"upload_time": "2023-04-19T14:51:25",
"upload_time_iso_8601": "2023-04-19T14:51:25.562104Z",
"url": "https://files.pythonhosted.org/packages/cd/0c/1769400bafbc3797fe725fa29d66256a7944101d65590ebdaf867d3b81f3/onnxoptimizer-0.3.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0ec83a33f3dceb754f5a83751703b524ba788642545318bb2083c49402dcede1",
"md5": "68b2211b8bfe26f223b8541be69e5e70",
"sha256": "f34db9dc55a682d3e5e60f5e6ff62101410620d2b70bef41f6158481a9a0b5ec"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "68b2211b8bfe26f223b8541be69e5e70",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 381710,
"upload_time": "2023-04-19T14:51:26",
"upload_time_iso_8601": "2023-04-19T14:51:26.540815Z",
"url": "https://files.pythonhosted.org/packages/0e/c8/3a33f3dceb754f5a83751703b524ba788642545318bb2083c49402dcede1/onnxoptimizer-0.3.13-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "708f4a9bb2ba490b7e8f9e8f5ad7a2e6f9c43bd5590f7affed4e2e9874fd2a0e",
"md5": "dbef6e4f1fdae536d7fc4c9ff2fbb6c2",
"sha256": "dcd1c529cb3d285f1bc75480ebe198a43f6bcc84ad010386f6e2d7bcd3052501"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp311-cp311-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "dbef6e4f1fdae536d7fc4c9ff2fbb6c2",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 1014993,
"upload_time": "2023-04-19T14:51:27",
"upload_time_iso_8601": "2023-04-19T14:51:27.821197Z",
"url": "https://files.pythonhosted.org/packages/70/8f/4a9bb2ba490b7e8f9e8f5ad7a2e6f9c43bd5590f7affed4e2e9874fd2a0e/onnxoptimizer-0.3.13-cp311-cp311-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3882dd92b6515a4965bb9136775a3cae84224a258285f8d84f2f2bbfd2fdaa15",
"md5": "8f07f5b609adb1cd9175ae710f732d80",
"sha256": "a65b2ff1d480f966f906fdc3731cd6a844762e0aae1876eeafb7586048d6be96"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp311-cp311-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "8f07f5b609adb1cd9175ae710f732d80",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 578239,
"upload_time": "2023-04-19T14:51:29",
"upload_time_iso_8601": "2023-04-19T14:51:29.114541Z",
"url": "https://files.pythonhosted.org/packages/38/82/dd92b6515a4965bb9136775a3cae84224a258285f8d84f2f2bbfd2fdaa15/onnxoptimizer-0.3.13-cp311-cp311-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "281b6dbb0e6f62c00b3c14f027316d0e4173f4ed82068ae64b40770d60a2156f",
"md5": "32a9ca0a53d8577dec88abe889248b59",
"sha256": "2f985cfef0fa2b7cf9ae64a36ca8dacb3e1861e31fa41fb85645cdbd73ccab6a"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "32a9ca0a53d8577dec88abe889248b59",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 678146,
"upload_time": "2023-04-19T14:51:30",
"upload_time_iso_8601": "2023-04-19T14:51:30.168416Z",
"url": "https://files.pythonhosted.org/packages/28/1b/6dbb0e6f62c00b3c14f027316d0e4173f4ed82068ae64b40770d60a2156f/onnxoptimizer-0.3.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dc0aedd2900c20702fbd7ccce59337720ad936d55da196e248804d91128b9b5f",
"md5": "0333f1fa02ff7fd697f12e531cd9e716",
"sha256": "82e606024a6dce999a8586d1f4b6af2ec454f7c5fd69807672a79067017a4812"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "0333f1fa02ff7fd697f12e531cd9e716",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 381769,
"upload_time": "2023-04-19T14:51:31",
"upload_time_iso_8601": "2023-04-19T14:51:31.560473Z",
"url": "https://files.pythonhosted.org/packages/dc/0a/edd2900c20702fbd7ccce59337720ad936d55da196e248804d91128b9b5f/onnxoptimizer-0.3.13-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "512fa81f21ce2139d74caf5205b28d5fb7ced033ccfbee8031b95217f2806888",
"md5": "3d85072d29cdf9fd52c26cd8d9f1eb55",
"sha256": "feb5fb749cb9b12602fef7bae034aaf9a36baa05d068fb3d991bbb758c0508bb"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp37-cp37m-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "3d85072d29cdf9fd52c26cd8d9f1eb55",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 577507,
"upload_time": "2023-04-19T14:51:32",
"upload_time_iso_8601": "2023-04-19T14:51:32.848697Z",
"url": "https://files.pythonhosted.org/packages/51/2f/a81f21ce2139d74caf5205b28d5fb7ced033ccfbee8031b95217f2806888/onnxoptimizer-0.3.13-cp37-cp37m-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2dbcf890e716c9c339af0be07f2c30e96e35a5532d73fc33251d75389a68b27d",
"md5": "91ae7f38d8cc940c973e300ea822d8e0",
"sha256": "917363d773f6b517a6edb97b9d1d64cd49dc12ee507d9daef04a443d2d8889a5"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "91ae7f38d8cc940c973e300ea822d8e0",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 678971,
"upload_time": "2023-04-19T14:51:34",
"upload_time_iso_8601": "2023-04-19T14:51:34.366633Z",
"url": "https://files.pythonhosted.org/packages/2d/bc/f890e716c9c339af0be07f2c30e96e35a5532d73fc33251d75389a68b27d/onnxoptimizer-0.3.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a650c763c4a6764e27de0ba1ecb23ad401edb7c3a7fa0bf8a97e9c8fec1eba86",
"md5": "b4763debee05ab45577f12e348e859b3",
"sha256": "f809f7ba336e6569e699b4e6741042ef71e8db30bb60a3380faae87c59d6118f"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "b4763debee05ab45577f12e348e859b3",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 381602,
"upload_time": "2023-04-19T14:51:35",
"upload_time_iso_8601": "2023-04-19T14:51:35.598717Z",
"url": "https://files.pythonhosted.org/packages/a6/50/c763c4a6764e27de0ba1ecb23ad401edb7c3a7fa0bf8a97e9c8fec1eba86/onnxoptimizer-0.3.13-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "966f1d06402da188a5635c955febe56f37e2fc8fa4fdc6ccdbc9aab9195e7a17",
"md5": "243dcf7d8d07de379a45131c568b5c5c",
"sha256": "f6a93aa863e23e040b23822b783b5d9bc1bf3a2153909bcc68dd9cd61c824798"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp38-cp38-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "243dcf7d8d07de379a45131c568b5c5c",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1014962,
"upload_time": "2023-04-19T14:51:37",
"upload_time_iso_8601": "2023-04-19T14:51:37.383747Z",
"url": "https://files.pythonhosted.org/packages/96/6f/1d06402da188a5635c955febe56f37e2fc8fa4fdc6ccdbc9aab9195e7a17/onnxoptimizer-0.3.13-cp38-cp38-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8ad9415e0c415dfb91c58598a96402fdd5d42b907ed50a6990477cd9e4616b5d",
"md5": "880fe352aef88eaff423fff2774649dc",
"sha256": "ad02bd61d5731587bcecb4aef3ecde6d22fdb0a36c8a2fb6c9b78b6b3cf30e42"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp38-cp38-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "880fe352aef88eaff423fff2774649dc",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 578168,
"upload_time": "2023-04-19T14:51:38",
"upload_time_iso_8601": "2023-04-19T14:51:38.350213Z",
"url": "https://files.pythonhosted.org/packages/8a/d9/415e0c415dfb91c58598a96402fdd5d42b907ed50a6990477cd9e4616b5d/onnxoptimizer-0.3.13-cp38-cp38-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d46a829d91c22f1b369d228cef1da1f47433a00d5d55a9bf40d7f1a41eca6104",
"md5": "55a44ccb6de1c276e8a9894a8c51ca79",
"sha256": "e3a08e7d3077830bbc99009442230547cae2e9f74682b4fffa42036b88ac49ea"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "55a44ccb6de1c276e8a9894a8c51ca79",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 677750,
"upload_time": "2023-04-19T14:51:40",
"upload_time_iso_8601": "2023-04-19T14:51:40.086878Z",
"url": "https://files.pythonhosted.org/packages/d4/6a/829d91c22f1b369d228cef1da1f47433a00d5d55a9bf40d7f1a41eca6104/onnxoptimizer-0.3.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0409486981928df4c1e91655c4137580379bc960fee245189daf18b606450c52",
"md5": "0b503a26745e9d0dd2760604692cea46",
"sha256": "3dc63c930db678d07cdd816618b6d990dadb572691c62576962c2aab995a0ba1"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "0b503a26745e9d0dd2760604692cea46",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 381671,
"upload_time": "2023-04-19T14:51:42",
"upload_time_iso_8601": "2023-04-19T14:51:42.484055Z",
"url": "https://files.pythonhosted.org/packages/04/09/486981928df4c1e91655c4137580379bc960fee245189daf18b606450c52/onnxoptimizer-0.3.13-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "36e47fe1fdd73ee94986b87dc52113780a8ca480288ff662abe819185df3177d",
"md5": "cf03b91fa54ba1bc87ab97945a88a587",
"sha256": "1949c259bc87a92680b1d4ee54813dc712a4328b4d4e140ec44c1739862baccc"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp39-cp39-macosx_10_15_universal2.whl",
"has_sig": false,
"md5_digest": "cf03b91fa54ba1bc87ab97945a88a587",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1015275,
"upload_time": "2023-04-19T14:51:44",
"upload_time_iso_8601": "2023-04-19T14:51:44.485764Z",
"url": "https://files.pythonhosted.org/packages/36/e4/7fe1fdd73ee94986b87dc52113780a8ca480288ff662abe819185df3177d/onnxoptimizer-0.3.13-cp39-cp39-macosx_10_15_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1c82123bcdf2d30f4d148c394bd112a761365ecbc4e1e95a544c55ca0d51dcb3",
"md5": "c1805a4eadb1e536eafcd00e78b23ab8",
"sha256": "9c0516d96da47875e9a36d0c9689e2d3e6f72950d98425ccfeba793b6ba4f55e"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp39-cp39-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "c1805a4eadb1e536eafcd00e78b23ab8",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 578348,
"upload_time": "2023-04-19T14:51:46",
"upload_time_iso_8601": "2023-04-19T14:51:46.278197Z",
"url": "https://files.pythonhosted.org/packages/1c/82/123bcdf2d30f4d148c394bd112a761365ecbc4e1e95a544c55ca0d51dcb3/onnxoptimizer-0.3.13-cp39-cp39-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "034c5a134dbf4cc421ed50ea8d22bdddc4d12d745303d276411592ed6681afd0",
"md5": "4e3b0a08c196f083b452324f9cf378be",
"sha256": "2cfa79a41d2439c47e6675f19cc6bcd7dce5d5da492f9bcde71dc0eba739dea6"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "4e3b0a08c196f083b452324f9cf378be",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 678168,
"upload_time": "2023-04-19T14:51:48",
"upload_time_iso_8601": "2023-04-19T14:51:48.543728Z",
"url": "https://files.pythonhosted.org/packages/03/4c/5a134dbf4cc421ed50ea8d22bdddc4d12d745303d276411592ed6681afd0/onnxoptimizer-0.3.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b2910b39b5bdac89997c7d19120077525f10b3043e9748ae5ab71b7f25b1b9e3",
"md5": "08974c070cb573a98fcf026545bf31a5",
"sha256": "f97f454cc2602095e341219f5c1b828d1588351251e4a4108017fd132ac5590c"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "08974c070cb573a98fcf026545bf31a5",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 381341,
"upload_time": "2023-04-19T14:51:50",
"upload_time_iso_8601": "2023-04-19T14:51:50.298543Z",
"url": "https://files.pythonhosted.org/packages/b2/91/0b39b5bdac89997c7d19120077525f10b3043e9748ae5ab71b7f25b1b9e3/onnxoptimizer-0.3.13-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "68bde8671229c2f1f99eb02961cac51e55ca64dbbe0d62791b6743cc8b9950b1",
"md5": "56977dfdfaaf7b117c7cfe9d7b4ac6e2",
"sha256": "e08b726e0d4577e51e529f36bc324bf11b7cff12852cf3eee081f05c8b8c6f33"
},
"downloads": -1,
"filename": "onnxoptimizer-0.3.13.tar.gz",
"has_sig": false,
"md5_digest": "56977dfdfaaf7b117c7cfe9d7b4ac6e2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 18466575,
"upload_time": "2023-04-19T14:51:52",
"upload_time_iso_8601": "2023-04-19T14:51:52.511462Z",
"url": "https://files.pythonhosted.org/packages/68/bd/e8671229c2f1f99eb02961cac51e55ca64dbbe0d62791b6743cc8b9950b1/onnxoptimizer-0.3.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-19 14:51:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "onnx",
"github_project": "optimizer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "onnxoptimizer"
}