ood-metrics


Nameood-metrics JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/tayden/ood-metrics
SummaryCalculate common OOD detection metrics
upload_time2023-09-08 19:41:57
maintainer
docs_urlNone
authorTaylor Denouden
requires_python>=3.9,<3.12
licenseMIT
keywords ood out-of-distribution anomaly detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # OOD Detection Metrics

Functions for computing metrics commonly used in the field of out-of-distribution (OOD) detection.

<div style="overflow: hidden; display: flex; justify-content:flex-start; gap:10px;">
<a href="https://github.com/tayden/ood-metrics/actions/workflows/tests.yml">
<img height="19px" alt="Tests" src="https://github.com/tayden/ood-metrics/actions/workflows/tests.yml/badge.svg" />
</a>

<a href="https://github.com/tayden/ood-metrics/blob/main/LICENSE">
    <img alt="License" src="https://anaconda.org/conda-forge/ood-metrics/badges/license.svg" height="20px" />
</a>

<a href="https://anaconda.org/conda-forge/ood-metrics">
    <img alt="Version" src="https://anaconda.org/conda-forge/ood-metrics/badges/version.svg" height="20px" />
</a>
</div>

## Installation

### With PIP

`pip install ood-metrics`

### With Conda

`conda install -c conda-forge ood-metrics`

## Metrics functions

### AUROC

Calculate and return the area under the ROC curve using unthresholded predictions on the data and a binary true label.

```python
from ood_metrics import auroc

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

assert auroc(scores, labels) == 0.75
```

### AUPR

Calculate and return the area under the Precision Recall curve using unthresholded predictions on the data and a binary true
label.

```python
from ood_metrics import aupr

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

assert aupr(scores, labels) == 0.25
```

### FPR @ 95% TPR

Return the FPR when TPR is at least 95%.

```python
from ood_metrics import fpr_at_95_tpr

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

assert fpr_at_95_tpr(scores, labels) == 0.25
```

### Detection Error

Return the misclassification probability when TPR is 95%.

```python
from ood_metrics import detection_error

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

assert detection_error(scores, labels) == 0.05
```

### Calculate all stats

Using predictions and labels, return a dictionary containing all novelty detection performance statistics.

```python
from ood_metrics import calc_metrics

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

assert calc_metrics(scores, labels) == {
    'fpr_at_95_tpr': 0.25,
    'detection_error': 0.05,
    'auroc': 0.75,
    'aupr_in': 0.25,
    'aupr_out': 0.94375
}
```

## Plotting functions

### Plot ROC

Plot an ROC curve based on unthresholded predictions and true binary labels.

```python

from ood_metrics import plot_roc

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

plot_roc(scores, labels)
# Generate Matplotlib AUROC plot
```

### Plot PR

Plot an Precision-Recall curve based on unthresholded predictions and true binary labels.

```python

from ood_metrics import plot_pr

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

plot_pr(scores, labels)
# Generate Matplotlib Precision-Recall plot
```

### Plot Barcode

Plot a visualization showing inliers and outliers sorted by their prediction of novelty.

```python

from ood_metrics import plot_barcode

labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]

plot_barcode(scores, labels)
# Shows visualization of sort order of labels occording to the scores.
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tayden/ood-metrics",
    "name": "ood-metrics",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.12",
    "maintainer_email": "",
    "keywords": "OOD,out-of-distribution,anomaly,detection",
    "author": "Taylor Denouden",
    "author_email": "taylordenouden@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/41/65/f80a7f4e2213ce0f9ea0dc45f1542492d820b841c626818cbd1b3bd8e1fb/ood_metrics-1.1.2.tar.gz",
    "platform": null,
    "description": "# OOD Detection Metrics\n\nFunctions for computing metrics commonly used in the field of out-of-distribution (OOD) detection.\n\n<div style=\"overflow: hidden; display: flex; justify-content:flex-start; gap:10px;\">\n<a href=\"https://github.com/tayden/ood-metrics/actions/workflows/tests.yml\">\n<img height=\"19px\" alt=\"Tests\" src=\"https://github.com/tayden/ood-metrics/actions/workflows/tests.yml/badge.svg\" />\n</a>\n\n<a href=\"https://github.com/tayden/ood-metrics/blob/main/LICENSE\">\n    <img alt=\"License\" src=\"https://anaconda.org/conda-forge/ood-metrics/badges/license.svg\" height=\"20px\" />\n</a>\n\n<a href=\"https://anaconda.org/conda-forge/ood-metrics\">\n    <img alt=\"Version\" src=\"https://anaconda.org/conda-forge/ood-metrics/badges/version.svg\" height=\"20px\" />\n</a>\n</div>\n\n## Installation\n\n### With PIP\n\n`pip install ood-metrics`\n\n### With Conda\n\n`conda install -c conda-forge ood-metrics`\n\n## Metrics functions\n\n### AUROC\n\nCalculate and return the area under the ROC curve using unthresholded predictions on the data and a binary true label.\n\n```python\nfrom ood_metrics import auroc\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nassert auroc(scores, labels) == 0.75\n```\n\n### AUPR\n\nCalculate and return the area under the Precision Recall curve using unthresholded predictions on the data and a binary true\nlabel.\n\n```python\nfrom ood_metrics import aupr\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nassert aupr(scores, labels) == 0.25\n```\n\n### FPR @ 95% TPR\n\nReturn the FPR when TPR is at least 95%.\n\n```python\nfrom ood_metrics import fpr_at_95_tpr\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nassert fpr_at_95_tpr(scores, labels) == 0.25\n```\n\n### Detection Error\n\nReturn the misclassification probability when TPR is 95%.\n\n```python\nfrom ood_metrics import detection_error\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nassert detection_error(scores, labels) == 0.05\n```\n\n### Calculate all stats\n\nUsing predictions and labels, return a dictionary containing all novelty detection performance statistics.\n\n```python\nfrom ood_metrics import calc_metrics\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nassert calc_metrics(scores, labels) == {\n    'fpr_at_95_tpr': 0.25,\n    'detection_error': 0.05,\n    'auroc': 0.75,\n    'aupr_in': 0.25,\n    'aupr_out': 0.94375\n}\n```\n\n## Plotting functions\n\n### Plot ROC\n\nPlot an ROC curve based on unthresholded predictions and true binary labels.\n\n```python\n\nfrom ood_metrics import plot_roc\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nplot_roc(scores, labels)\n# Generate Matplotlib AUROC plot\n```\n\n### Plot PR\n\nPlot an Precision-Recall curve based on unthresholded predictions and true binary labels.\n\n```python\n\nfrom ood_metrics import plot_pr\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nplot_pr(scores, labels)\n# Generate Matplotlib Precision-Recall plot\n```\n\n### Plot Barcode\n\nPlot a visualization showing inliers and outliers sorted by their prediction of novelty.\n\n```python\n\nfrom ood_metrics import plot_barcode\n\nlabels = [0, 0, 0, 1, 0]\nscores = [0.1, 0.3, 0.6, 0.9, 1.3]\n\nplot_barcode(scores, labels)\n# Shows visualization of sort order of labels occording to the scores.\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Calculate common OOD detection metrics",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/tayden/ood-metrics",
        "Repository": "https://github.com/tayden/ood-metrics"
    },
    "split_keywords": [
        "ood",
        "out-of-distribution",
        "anomaly",
        "detection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1e07ad1c339c1673704446aaec3ff98ea61d0599bdaad4c97346efd227d23355",
                "md5": "5267e176c8cf59db11f1f0a33b3348d5",
                "sha256": "1247819d025032ee632fbc15340517d2faadcc0333a17ce15953901dfb00e5b0"
            },
            "downloads": -1,
            "filename": "ood_metrics-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5267e176c8cf59db11f1f0a33b3348d5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.12",
            "size": 6123,
            "upload_time": "2023-09-08T19:41:56",
            "upload_time_iso_8601": "2023-09-08T19:41:56.121765Z",
            "url": "https://files.pythonhosted.org/packages/1e/07/ad1c339c1673704446aaec3ff98ea61d0599bdaad4c97346efd227d23355/ood_metrics-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4165f80a7f4e2213ce0f9ea0dc45f1542492d820b841c626818cbd1b3bd8e1fb",
                "md5": "c9c684e5a73d4024a24f590115f0045e",
                "sha256": "5ca0ac4dbb9e2b5dfbc7022000f581eabc46466e0722a487caa221628dca6f5b"
            },
            "downloads": -1,
            "filename": "ood_metrics-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c9c684e5a73d4024a24f590115f0045e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.12",
            "size": 4680,
            "upload_time": "2023-09-08T19:41:57",
            "upload_time_iso_8601": "2023-09-08T19:41:57.574674Z",
            "url": "https://files.pythonhosted.org/packages/41/65/f80a7f4e2213ce0f9ea0dc45f1542492d820b841c626818cbd1b3bd8e1fb/ood_metrics-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-08 19:41:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tayden",
    "github_project": "ood-metrics",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ood-metrics"
}
        
Elapsed time: 0.12631s