openTSNE
========
|Build Status| |ReadTheDocs Badge| |License Badge|
openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1]_, a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2]_, massive speed improvements [3]_ [4]_ [5]_, enabling t-SNE to scale to millions of data points and various tricks to improve global alignment of the resulting visualizations [6]_.
.. figure:: docs/source/images/macosko_2015.png
:alt: Macosko 2015 mouse retina t-SNE embedding
:align: center
A visualization of 44,808 single cell transcriptomes obtained from the mouse retina [7]_ embedded using the multiscale kernel trick to better preserve the global aligment of the clusters.
- `Documentation <http://opentsne.readthedocs.io>`__
- `User Guide and Tutorial <https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html>`__
- Examples: `basic <https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html>`__, `advanced <https://opentsne.readthedocs.io/en/latest/examples/02_advanced_usage/02_advanced_usage.html>`__, `preserving global alignment <https://opentsne.readthedocs.io/en/latest/examples/03_preserving_global_structure/03_preserving_global_structure.html>`__, `embedding large data sets <https://opentsne.readthedocs.io/en/latest/examples/04_large_data_sets/04_large_data_sets.html>`__
- `Speed benchmarks <https://opentsne.readthedocs.io/en/latest/benchmarks.html>`__
Installation
------------
openTSNE requires Python 3.8 or higher in order to run.
Conda
~~~~~
openTSNE can be easily installed from ``conda-forge`` with
::
conda install --channel conda-forge opentsne
`Conda package <https://anaconda.org/conda-forge/opentsne>`__
PyPi
~~~~
openTSNE is also available through ``pip`` and can be installed with
::
pip install opentsne
`PyPi package <https://pypi.org/project/openTSNE>`__
Installing from source
~~~~~~~~~~~~~~~~~~~~~~
If you wish to install openTSNE from source, please run
::
pip install .
in the root directory to install the appropriate dependencies and compile the necessary binary files.
Please note that openTSNE requires a C/C++ compiler to be available on the system.
In order for openTSNE to utilize multiple threads, the C/C++ compiler
must support ``OpenMP``. In practice, almost all compilers
implement this with the exception of older version of ``clang`` on OSX
systems.
To squeeze the most out of openTSNE, you may also consider installing
FFTW3 prior to installation. FFTW3 implements the Fast Fourier
Transform, which is heavily used in openTSNE. If FFTW3 is not available,
openTSNE will use numpy’s implementation of the FFT, which is slightly
slower than FFTW. The difference is only noticeable with large data sets
containing millions of data points.
A hello world example
---------------------
Getting started with openTSNE is very simple. First, we'll load up some data using scikit-learn
.. code:: python
from sklearn import datasets
iris = datasets.load_iris()
x, y = iris["data"], iris["target"]
then, we'll import and run
.. code:: python
from openTSNE import TSNE
embedding = TSNE().fit(x)
Citation
--------
If you make use of openTSNE for your work we would appreciate it if you would cite the paper
.. code::
@article{Policar2024,
title={openTSNE: A Modular Python Library for t-SNE Dimensionality Reduction and Embedding},
author={Poli{\v c}ar, Pavlin G. and Stra{\v z}ar, Martin and Zupan, Bla{\v z}},
journal={Journal of Statistical Software},
year={2024},
volume={109},
number={3},
pages={1–30},
doi={10.18637/jss.v109.i03},
url={https://www.jstatsoft.org/index.php/jss/article/view/v109i03}
}
openTSNE implements two efficient algorithms for t-SNE. Please consider citing the original authors of the algorithm that you use. If you use FIt-SNE (default), then the citation is [5]_ below, but if you use Barnes-Hut the citations are [3]_ and [4]_.
References
----------
.. [1] Van Der Maaten, Laurens, and Hinton, Geoffrey. `“Visualizing data using
t-SNE.” <http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>`__
Journal of Machine Learning Research 9.Nov (2008): 2579-2605.
.. [2] Poličar, Pavlin G., Martin Stražar, and Blaž Zupan. `“Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification.” <https://link.springer.com/article/10.1007/s10994-021-06043-1>`__ Machine Learning (2021): 1-20.
.. [3] Van Der Maaten, Laurens. `“Accelerating t-SNE using tree-based algorithms.”
<http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf>`__
Journal of Machine Learning Research 15.1 (2014): 3221-3245.
.. [4] Yang, Zhirong, Jaakko Peltonen, and Samuel Kaski. `"Scalable optimization of neighbor embedding for visualization." <https://proceedings.mlr.press/v28/yang13b.html>`__ International Conference on Machine Learning. PMLR, 2013.
.. [5] Linderman, George C., et al. `"Fast interpolation-based t-SNE for improved
visualization of single-cell RNA-seq data." <https://www.nature.com/articles/s41592-018-0308-4>`__ Nature Methods 16.3 (2019): 243.
.. [6] Kobak, Dmitry, and Berens, Philipp. `“The art of using t-SNE for single-cell transcriptomics.” <https://www.nature.com/articles/s41467-019-13056-x>`__
Nature Communications 10, 5416 (2019).
.. [7] Macosko, Evan Z., et al. `“Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets.”
<https://www.sciencedirect.com/science/article/pii/S0092867415005498>`__
Cell 161.5 (2015): 1202-1214.
.. |Build Status| image:: https://dev.azure.com/pavlingp/openTSNE/_apis/build/status/Test?branchName=master
:target: https://dev.azure.com/pavlingp/openTSNE/_build/latest?definitionId=1&branchName=master
.. |ReadTheDocs Badge| image:: https://readthedocs.org/projects/opentsne/badge/?version=latest
:target: https://opentsne.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. |License Badge| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
Raw data
{
"_id": null,
"home_page": "https://github.com/pavlin-policar/openTSNE",
"name": "openTSNE",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Pavlin Poli\u010dar",
"author_email": "pavlin.g.p@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/71/09/357810160298701c979a75c9d4db27e6e8996add0d7879d60cc648341171/opentsne-1.0.2.tar.gz",
"platform": null,
"description": "openTSNE\n========\n\n|Build Status| |ReadTheDocs Badge| |License Badge|\n\nopenTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1]_, a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2]_, massive speed improvements [3]_ [4]_ [5]_, enabling t-SNE to scale to millions of data points and various tricks to improve global alignment of the resulting visualizations [6]_.\n\n.. figure:: docs/source/images/macosko_2015.png\n :alt: Macosko 2015 mouse retina t-SNE embedding\n :align: center\n\n A visualization of 44,808 single cell transcriptomes obtained from the mouse retina [7]_ embedded using the multiscale kernel trick to better preserve the global aligment of the clusters.\n\n- `Documentation <http://opentsne.readthedocs.io>`__\n- `User Guide and Tutorial <https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html>`__\n- Examples: `basic <https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html>`__, `advanced <https://opentsne.readthedocs.io/en/latest/examples/02_advanced_usage/02_advanced_usage.html>`__, `preserving global alignment <https://opentsne.readthedocs.io/en/latest/examples/03_preserving_global_structure/03_preserving_global_structure.html>`__, `embedding large data sets <https://opentsne.readthedocs.io/en/latest/examples/04_large_data_sets/04_large_data_sets.html>`__\n- `Speed benchmarks <https://opentsne.readthedocs.io/en/latest/benchmarks.html>`__\n\nInstallation\n------------\n\nopenTSNE requires Python 3.8 or higher in order to run.\n\nConda\n~~~~~\n\nopenTSNE can be easily installed from ``conda-forge`` with\n\n::\n\n conda install --channel conda-forge opentsne\n\n`Conda package <https://anaconda.org/conda-forge/opentsne>`__\n\nPyPi\n~~~~\n\nopenTSNE is also available through ``pip`` and can be installed with\n\n::\n\n pip install opentsne\n\n`PyPi package <https://pypi.org/project/openTSNE>`__\n\nInstalling from source\n~~~~~~~~~~~~~~~~~~~~~~\n\nIf you wish to install openTSNE from source, please run\n\n::\n\n pip install .\n\n\nin the root directory to install the appropriate dependencies and compile the necessary binary files.\n\nPlease note that openTSNE requires a C/C++ compiler to be available on the system.\n\nIn order for openTSNE to utilize multiple threads, the C/C++ compiler\nmust support ``OpenMP``. In practice, almost all compilers\nimplement this with the exception of older version of ``clang`` on OSX\nsystems.\n\nTo squeeze the most out of openTSNE, you may also consider installing\nFFTW3 prior to installation. FFTW3 implements the Fast Fourier\nTransform, which is heavily used in openTSNE. If FFTW3 is not available,\nopenTSNE will use numpy\u2019s implementation of the FFT, which is slightly\nslower than FFTW. The difference is only noticeable with large data sets\ncontaining millions of data points.\n\nA hello world example\n---------------------\n\nGetting started with openTSNE is very simple. First, we'll load up some data using scikit-learn\n\n.. code:: python\n\n from sklearn import datasets\n\n iris = datasets.load_iris()\n x, y = iris[\"data\"], iris[\"target\"]\n\nthen, we'll import and run\n\n.. code:: python\n\n from openTSNE import TSNE\n\n embedding = TSNE().fit(x)\n\nCitation\n--------\n\nIf you make use of openTSNE for your work we would appreciate it if you would cite the paper\n\n.. code::\n\n @article{Policar2024,\n title={openTSNE: A Modular Python Library for t-SNE Dimensionality Reduction and Embedding},\n author={Poli{\\v c}ar, Pavlin G. and Stra{\\v z}ar, Martin and Zupan, Bla{\\v z}},\n journal={Journal of Statistical Software},\n year={2024},\n volume={109},\n number={3},\n pages={1\u201330},\n doi={10.18637/jss.v109.i03},\n url={https://www.jstatsoft.org/index.php/jss/article/view/v109i03}\n }\n \nopenTSNE implements two efficient algorithms for t-SNE. Please consider citing the original authors of the algorithm that you use. If you use FIt-SNE (default), then the citation is [5]_ below, but if you use Barnes-Hut the citations are [3]_ and [4]_.\n\n\nReferences\n----------\n\n.. [1] Van Der Maaten, Laurens, and Hinton, Geoffrey. `\u201cVisualizing data using\n t-SNE.\u201d <http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>`__\n Journal of Machine Learning Research 9.Nov (2008): 2579-2605.\n.. [2] Poli\u010dar, Pavlin G., Martin Stra\u017ear, and Bla\u017e Zupan. `\u201cEmbedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification.\u201d <https://link.springer.com/article/10.1007/s10994-021-06043-1>`__ Machine Learning (2021): 1-20.\n.. [3] Van Der Maaten, Laurens. `\u201cAccelerating t-SNE using tree-based algorithms.\u201d\n <http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf>`__\n Journal of Machine Learning Research 15.1 (2014): 3221-3245.\n.. [4] Yang, Zhirong, Jaakko Peltonen, and Samuel Kaski. `\"Scalable optimization of neighbor embedding for visualization.\" <https://proceedings.mlr.press/v28/yang13b.html>`__ International Conference on Machine Learning. PMLR, 2013.\n.. [5] Linderman, George C., et al. `\"Fast interpolation-based t-SNE for improved\n visualization of single-cell RNA-seq data.\" <https://www.nature.com/articles/s41592-018-0308-4>`__ Nature Methods 16.3 (2019): 243.\n.. [6] Kobak, Dmitry, and Berens, Philipp. `\u201cThe art of using t-SNE for single-cell transcriptomics.\u201d <https://www.nature.com/articles/s41467-019-13056-x>`__\n Nature Communications 10, 5416 (2019).\n.. [7] Macosko, Evan Z., et al. `\u201cHighly parallel genome-wide expression profiling of\n individual cells using nanoliter droplets.\u201d\n <https://www.sciencedirect.com/science/article/pii/S0092867415005498>`__\n Cell 161.5 (2015): 1202-1214.\n\n.. |Build Status| image:: https://dev.azure.com/pavlingp/openTSNE/_apis/build/status/Test?branchName=master\n :target: https://dev.azure.com/pavlingp/openTSNE/_build/latest?definitionId=1&branchName=master\n.. |ReadTheDocs Badge| image:: https://readthedocs.org/projects/opentsne/badge/?version=latest\n :target: https://opentsne.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n.. |License Badge| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg\n :target: https://opensource.org/licenses/BSD-3-Clause\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Extensible, parallel implementations of t-SNE",
"version": "1.0.2",
"project_urls": {
"Documentation": "https://opentsne.readthedocs.io/",
"Homepage": "https://github.com/pavlin-policar/openTSNE",
"Issue Tracker": "https://github.com/pavlin-policar/openTSNE/issues",
"Source": "https://github.com/pavlin-policar/openTSNE"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "558e2b5b0fb28c721d3023baa36859e209dbbdd45786e1d622ec1e484220d4f3",
"md5": "c99ffc13192ddec0400979cf9b28943d",
"sha256": "c82a2c263e570c75256d58590f7c99273c8f8152fada2e3f36a3de92d165a483"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp310-cp310-macosx_10_12_universal2.whl",
"has_sig": false,
"md5_digest": "c99ffc13192ddec0400979cf9b28943d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1011876,
"upload_time": "2024-08-13T11:02:01",
"upload_time_iso_8601": "2024-08-13T11:02:01.899837Z",
"url": "https://files.pythonhosted.org/packages/55/8e/2b5b0fb28c721d3023baa36859e209dbbdd45786e1d622ec1e484220d4f3/openTSNE-1.0.2-cp310-cp310-macosx_10_12_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d975e032529880ccd24de86e6c7988a50e0fc8ad001a829aa3a398a947168f15",
"md5": "2ff8117c7e629ae8c189007c6e69bc2f",
"sha256": "7a7270156cbabc249301cd30f6010387f618295ca68c50913c98b9dad8d9c682"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2ff8117c7e629ae8c189007c6e69bc2f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 3011808,
"upload_time": "2024-08-13T11:02:04",
"upload_time_iso_8601": "2024-08-13T11:02:04.650521Z",
"url": "https://files.pythonhosted.org/packages/d9/75/e032529880ccd24de86e6c7988a50e0fc8ad001a829aa3a398a947168f15/openTSNE-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d9b601c699b76282f63b2fea438ba0d22bec15dbcc2e4c30234b729594049e4d",
"md5": "14ed93a24731c61288e8ea4ddedaf86b",
"sha256": "99c90695c95f09a100216532d1cb7ec24a6269dd005f1e835c1ca0d603d43542"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "14ed93a24731c61288e8ea4ddedaf86b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 470551,
"upload_time": "2024-08-13T11:02:06",
"upload_time_iso_8601": "2024-08-13T11:02:06.020288Z",
"url": "https://files.pythonhosted.org/packages/d9/b6/01c699b76282f63b2fea438ba0d22bec15dbcc2e4c30234b729594049e4d/openTSNE-1.0.2-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cdfa0807e7a219889dc69f25a05fdd20872513b179483630b6b52bbfccdfab47",
"md5": "a2977aab8710874f98b13bfb420f1899",
"sha256": "7882df123f210946d2806fb73feec3666e76eee2d6b6744893e14203e0641a38"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp311-cp311-macosx_10_12_universal2.whl",
"has_sig": false,
"md5_digest": "a2977aab8710874f98b13bfb420f1899",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1010149,
"upload_time": "2024-08-13T11:02:07",
"upload_time_iso_8601": "2024-08-13T11:02:07.691093Z",
"url": "https://files.pythonhosted.org/packages/cd/fa/0807e7a219889dc69f25a05fdd20872513b179483630b6b52bbfccdfab47/openTSNE-1.0.2-cp311-cp311-macosx_10_12_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fc68243fb74f0b0c0e245f67048ad8658e444c7d92d9623812bd5f1123eaf326",
"md5": "f41422f2659af1adf67d3af3689b2e97",
"sha256": "949f694893fd4f803acb513bc2e3d80ef04b707166c28a469ca43033f52b8e1b"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f41422f2659af1adf67d3af3689b2e97",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 3214122,
"upload_time": "2024-08-13T11:02:09",
"upload_time_iso_8601": "2024-08-13T11:02:09.591302Z",
"url": "https://files.pythonhosted.org/packages/fc/68/243fb74f0b0c0e245f67048ad8658e444c7d92d9623812bd5f1123eaf326/openTSNE-1.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "046d1fb263a8b48d6350ea919ff30956caeff65b9c030dae0aada2093acd0d7c",
"md5": "39b7e38402a934f0de7e1ae0400b7a5b",
"sha256": "6799cb38e560e50f5ea932be587ad3efd4cf62d5a55d28c3061ca3e2aee210ce"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "39b7e38402a934f0de7e1ae0400b7a5b",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 470737,
"upload_time": "2024-08-13T11:02:11",
"upload_time_iso_8601": "2024-08-13T11:02:11.527372Z",
"url": "https://files.pythonhosted.org/packages/04/6d/1fb263a8b48d6350ea919ff30956caeff65b9c030dae0aada2093acd0d7c/openTSNE-1.0.2-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0bc22032c772b0bce9c09fdb3cd45bdb6cfe1e7b177ce1f5e21952cc49af264b",
"md5": "41d2d49d92d850509503f7d27ec490ea",
"sha256": "0de8826568aa4f03658274edb393a5be031f771ea86f3493e91aecad27100c56"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp312-cp312-macosx_10_12_universal2.whl",
"has_sig": false,
"md5_digest": "41d2d49d92d850509503f7d27ec490ea",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1006929,
"upload_time": "2024-08-13T11:02:13",
"upload_time_iso_8601": "2024-08-13T11:02:13.019170Z",
"url": "https://files.pythonhosted.org/packages/0b/c2/2032c772b0bce9c09fdb3cd45bdb6cfe1e7b177ce1f5e21952cc49af264b/openTSNE-1.0.2-cp312-cp312-macosx_10_12_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3c9ebc5edb00d363dcaf3c3708036c60930d18797621dfa1651bbf68245ab30f",
"md5": "9dcc2630549fda0ed6ea4b1ea08872b3",
"sha256": "37f24d7d139bd466f00ae765120c3a8049ceddc1282e63d75e3406c3ac3b3783"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9dcc2630549fda0ed6ea4b1ea08872b3",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 3163997,
"upload_time": "2024-08-13T11:02:15",
"upload_time_iso_8601": "2024-08-13T11:02:15.983426Z",
"url": "https://files.pythonhosted.org/packages/3c/9e/bc5edb00d363dcaf3c3708036c60930d18797621dfa1651bbf68245ab30f/openTSNE-1.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "aed14cf81122288257765600faa093121530503d2893d56f9e5f68702dbd5da0",
"md5": "35c90c152198383a9bce9bf5bb158ab4",
"sha256": "7f342ec51fe365cd1a23ad25e6a7b5417f8bd1bf4d71a5d526f42ad4c4b64114"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "35c90c152198383a9bce9bf5bb158ab4",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 469294,
"upload_time": "2024-08-13T11:02:17",
"upload_time_iso_8601": "2024-08-13T11:02:17.980205Z",
"url": "https://files.pythonhosted.org/packages/ae/d1/4cf81122288257765600faa093121530503d2893d56f9e5f68702dbd5da0/openTSNE-1.0.2-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "14a572aad8de41cc577c6b34977a4cbdb97e5bf2c1141d3430191da16cd7b1dc",
"md5": "4a06c96eb9b667bb227c173f855fd8e9",
"sha256": "78d1122ce9233ba3e9de07825127b34b3f330665047f3e04c3914ee0e2b3fad2"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp39-cp39-macosx_10_12_universal2.whl",
"has_sig": false,
"md5_digest": "4a06c96eb9b667bb227c173f855fd8e9",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1016506,
"upload_time": "2024-08-13T11:02:20",
"upload_time_iso_8601": "2024-08-13T11:02:20.339417Z",
"url": "https://files.pythonhosted.org/packages/14/a5/72aad8de41cc577c6b34977a4cbdb97e5bf2c1141d3430191da16cd7b1dc/openTSNE-1.0.2-cp39-cp39-macosx_10_12_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "02f5ddcead14d625cc09c1779304d22aac41d3d06552a8f8bb6680d8d67e28da",
"md5": "8520cbd00a3928e54dd685514ee81a39",
"sha256": "4e349d876a26f417326b0aa4e031f2ca5af167608538eaae2b5d2fbaabd353df"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8520cbd00a3928e54dd685514ee81a39",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 3023094,
"upload_time": "2024-08-13T11:02:22",
"upload_time_iso_8601": "2024-08-13T11:02:22.146693Z",
"url": "https://files.pythonhosted.org/packages/02/f5/ddcead14d625cc09c1779304d22aac41d3d06552a8f8bb6680d8d67e28da/openTSNE-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2928da77c553872d16fc54a133c478173782ae3b5289d4b47314019d35a0703f",
"md5": "e1d96f29decc473c5a392693f11afd36",
"sha256": "8c927dc2b47560d06abab48a8cca0ddf388a9200a2d27fc197c786b15f644e7c"
},
"downloads": -1,
"filename": "openTSNE-1.0.2-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "e1d96f29decc473c5a392693f11afd36",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 472805,
"upload_time": "2024-08-13T11:02:24",
"upload_time_iso_8601": "2024-08-13T11:02:24.517802Z",
"url": "https://files.pythonhosted.org/packages/29/28/da77c553872d16fc54a133c478173782ae3b5289d4b47314019d35a0703f/openTSNE-1.0.2-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7109357810160298701c979a75c9d4db27e6e8996add0d7879d60cc648341171",
"md5": "ae0c9551830d1fa2caa67664fb7d8282",
"sha256": "e2aecaa7a487100246f2d3fef9855d1bd6cc02a1c6da8fb2a54583f307aa4229"
},
"downloads": -1,
"filename": "opentsne-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "ae0c9551830d1fa2caa67664fb7d8282",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 251206,
"upload_time": "2024-08-13T11:02:26",
"upload_time_iso_8601": "2024-08-13T11:02:26.161065Z",
"url": "https://files.pythonhosted.org/packages/71/09/357810160298701c979a75c9d4db27e6e8996add0d7879d60cc648341171/opentsne-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-13 11:02:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pavlin-policar",
"github_project": "openTSNE",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "opentsne"
}