openad


Nameopenad JSON
Version 0.8.0 PyPI version JSON
download
home_pagehttps://openad.accelerate.science
SummaryOpen Accelerated Discovery
upload_time2025-05-30 03:05:31
maintainerNone
docs_urlNone
authorPhil Downey
requires_python<3.12,>=3.10
licenseMIT
keywords deepsearch rxn jupyter magic commands accelerated discovery science retrosynthesis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- autogenerated:notice -->
<!--

Attention
---------
One or more descriptions in this file have been auto-generated
by the generate_docs() script in @openad-website/generator.

For more info:
https://github.com/acceleratedscience/openad-website/tree/generator

-->
<!-- /autogenerated:notice -->

<img src="assets/molecule-header.jpg" width="830" alt="OpenAD" />

# OpenAD

**Open Source Molecular & Materials Research Toolkit**

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/openad)](https://pypi.org/project/openad/)
[![PyPI version](https://img.shields.io/pypi/v/openad)](https://pypi.org/project/openad/)
[![License MIT](https://img.shields.io/github/license/acceleratedscience/openad-toolkit)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

<!-- autogenerated:description -->
OpenAD is an intuitive toolkit that simplifies access to a variety of AI models and services for scientific discovery. Together with its convenient visualisation capabilities, OpenAD empowers scientists across industries to enhance their discovery process.

OpenAD is designed to integrate into your existing workflows via Jupyter Notebook, CLI or API, using a low-code approach to accelerate your research.
<!-- /autogenerated:description -->

[![image](assets/home.svg)](https://openad.accelerate.science)
[![image](assets/docs.svg)](https://openad.accelerate.science/docs/getting-started)
[![image](assets/tutorials.svg)](https://openad.accelerate.science/blog/category/tutorials)
<!-- [![image](assets/install.svg)](https://openad.accelerate.science/docs/installation) -->
<br><br>


## Quick Install

> [!TIP]
> To install OpenAD inside a virtual environment, please consult the [Installation](https://openad.accelerate.science/docs/installation) guide.

    pip install openad
    openad

Get started with Jupyter Notebook examples:

    init_magic
    init_examples
    jupyter lab ~/openad_notebooks/Table_of_Contents.ipynb

If you get an error when running `init_magic`, you may first need to setup the default iPython profile for magic commands.

    ipython profile create

<br><br>

## Release Notes

`0.8.0`
- We have retired the RXN and Deep Search toolkits and replaced them with new and more user-friendly [plugins](README/plugins.md).

            

Raw data

            {
    "_id": null,
    "home_page": "https://openad.accelerate.science",
    "name": "openad",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.10",
    "maintainer_email": null,
    "keywords": "deepsearch, rxn, jupyter, magic commands, accelerated Discovery, science, retrosynthesis",
    "author": "Phil Downey",
    "author_email": "phil.downey1@ibm.com",
    "download_url": "https://files.pythonhosted.org/packages/38/b5/cae255f0d135908b661100b42560cf51700d3ab6f9533c8bb229f7e50e52/openad-0.8.0.tar.gz",
    "platform": null,
    "description": "<!-- autogenerated:notice -->\n<!--\n\nAttention\n---------\nOne or more descriptions in this file have been auto-generated\nby the generate_docs() script in @openad-website/generator.\n\nFor more info:\nhttps://github.com/acceleratedscience/openad-website/tree/generator\n\n-->\n<!-- /autogenerated:notice -->\n\n<img src=\"assets/molecule-header.jpg\" width=\"830\" alt=\"OpenAD\" />\n\n# OpenAD\n\n**Open Source Molecular & Materials Research Toolkit**\n\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/openad)](https://pypi.org/project/openad/)\n[![PyPI version](https://img.shields.io/pypi/v/openad)](https://pypi.org/project/openad/)\n[![License MIT](https://img.shields.io/github/license/acceleratedscience/openad-toolkit)](https://opensource.org/licenses/MIT)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\n<!-- autogenerated:description -->\nOpenAD is an intuitive toolkit that simplifies access to a variety of AI models and services for scientific discovery. Together with its convenient visualisation capabilities, OpenAD empowers scientists across industries to enhance their discovery process.\n\nOpenAD is designed to integrate into your existing workflows via Jupyter Notebook, CLI or API, using a low-code approach to accelerate your research.\n<!-- /autogenerated:description -->\n\n[![image](assets/home.svg)](https://openad.accelerate.science)\n[![image](assets/docs.svg)](https://openad.accelerate.science/docs/getting-started)\n[![image](assets/tutorials.svg)](https://openad.accelerate.science/blog/category/tutorials)\n<!-- [![image](assets/install.svg)](https://openad.accelerate.science/docs/installation) -->\n<br><br>\n\n\n## Quick Install\n\n> [!TIP]\n> To install OpenAD inside a virtual environment, please consult the [Installation](https://openad.accelerate.science/docs/installation) guide.\n\n    pip install openad\n    openad\n\nGet started with Jupyter Notebook examples:\n\n    init_magic\n    init_examples\n    jupyter lab ~/openad_notebooks/Table_of_Contents.ipynb\n\nIf you get an error when running `init_magic`, you may first need to setup the default iPython profile for magic commands.\n\n    ipython profile create\n\n<br><br>\n\n## Release Notes\n\n`0.8.0`\n- We have retired the RXN and Deep Search toolkits and replaced them with new and more user-friendly [plugins](README/plugins.md).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Open Accelerated Discovery",
    "version": "0.8.0",
    "project_urls": {
        "Documentation": "https://openad.accelerate.science/docs",
        "Homepage": "https://openad.accelerate.science",
        "Repository": "https://github.com/acceleratedscience/openad-toolkit"
    },
    "split_keywords": [
        "deepsearch",
        " rxn",
        " jupyter",
        " magic commands",
        " accelerated discovery",
        " science",
        " retrosynthesis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df9ca0ca779affb067c05103bcd82f5af0c37ea1046ddeaa847a07d96764af16",
                "md5": "2b0d60e32559d2367680e050fbc66986",
                "sha256": "69550cc04f030c646f16506f2a906260b4362b20f9b6f58babdbd50ce7e7ebd1"
            },
            "downloads": -1,
            "filename": "openad-0.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2b0d60e32559d2367680e050fbc66986",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.10",
            "size": 26102573,
            "upload_time": "2025-05-30T03:04:50",
            "upload_time_iso_8601": "2025-05-30T03:04:50.692696Z",
            "url": "https://files.pythonhosted.org/packages/df/9c/a0ca779affb067c05103bcd82f5af0c37ea1046ddeaa847a07d96764af16/openad-0.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38b5cae255f0d135908b661100b42560cf51700d3ab6f9533c8bb229f7e50e52",
                "md5": "3957e6c5bf3693f691cfd9146a2eb21b",
                "sha256": "18f1771ed8d5bdc73e1b09cf55110668c10a8a465abd3035778f066763a02697"
            },
            "downloads": -1,
            "filename": "openad-0.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3957e6c5bf3693f691cfd9146a2eb21b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.10",
            "size": 25828235,
            "upload_time": "2025-05-30T03:05:31",
            "upload_time_iso_8601": "2025-05-30T03:05:31.211427Z",
            "url": "https://files.pythonhosted.org/packages/38/b5/cae255f0d135908b661100b42560cf51700d3ab6f9533c8bb229f7e50e52/openad-0.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-05-30 03:05:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "acceleratedscience",
    "github_project": "openad-toolkit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "openad"
}
        
Elapsed time: 0.49379s