openawsem


Nameopenawsem JSON
Version 1.1.1 PyPI version JSON
download
home_pagehttps://openawsem.org/
SummaryCalculates single residue frustration, and mutational frustration of proteins.
upload_time2023-11-04 20:03:59
maintainer
docs_urlNone
authorCarlos Bueno
requires_python>=3.8
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # OpenAWSEM
## An implementation of the AWSEM coarse-grained protein folding forcefield in OpenMM

OpenAWSEM is an implementation of the AWSEM (Associative memory, Water-mediated Structure, and Energy Model) coarse-grained protein forcefield designed for use with the OpenMM simulation toolkit.

## Installation

### Conda

To install OpenAWSEM using Conda, execute the following command:

```bash
conda install -c conda-forge openawsem
```

### Git

This installation mode is recommended for users that want to contribute to the code and Wolynes lab members.

```bash
#Clone the awsem repository
git clone https://github.com/cabb99/openawsem.git
cd openawsem

# Create a new conda environment
conda create -n openawsem --file requirements.txt
conda activate openawsem

# Install the package in editable mode
pip install -e .
```

## Requirements

### STRIDE
STRIDE is used for secondary structure prediction. 
Download and install STRIDE and add it to your PATH:
https://webclu.bio.wzw.tum.de/stride/
```bash
wget https://webclu.bio.wzw.tum.de/stride/stride.tar.gz
tar -xvzf stride.tar.gz
cd stride
make
echo 'export PATH=$PATH:'`pwd` >> ~/.bashrc
```

### PSIBLAST    
Install psiblast using the distribution from bioconda:

```
conda install -c bioconda blast
```

Alternatively Download and install psiblast and add it to your PATH: 
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

```bash
wget https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/$(curl -s "https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/" | grep -o 'ncbi-blast-[0-9.]*+-x64-linux.tar.gz'| head -n 1)
tar -xvzf ncbi-*.tar.gz
cd ncbi*/bin
echo 'export PATH=$PATH:'`pwd` >> ~/.bashrc
```

### PDB_SEQRES.txt
* Download pdb_seqres.txt and put it in the cloned openawsem repository location
```
wget ftp://ftp.wwpdb.org/pub/pdb/derived_data/pdb_seqres.txt
OPENAWSEM_LOCATION=$(python -c "import openawsem; print(openawsem.__location__)")
cp pdb_seqres.txt $OPENAWSEM_LOCATION/data

```

## Configuration
OpenAWSEM allows users to configure data storage paths. To do this:

Create a .awsem directory in your home folder.
Inside .awsem, create a configuration file named config.ini to specify data paths. 
The default paths point to the local data directory inside the OpenAWSEM module.
Example config.ini:

```
[Data Paths]
blast = /home/USER/data/database/cullpdb_pc80_res3.0_R1.0_d160504_chains29712
gro = /home/USER/data/Gros
pdb = /home/USER/data/PDBs
index = /home/USER/data/Indices
pdbfail = /home/USER/data/notExistPDBsList
pdbseqres = /home/USER/data/pdb_seqres.txt
topology = /home/USER/topology
```

## Example
Simulation of the amino terminal domain of Phage 434 repressor (1r69)

1. **Activate the OpenMM Environment:**
   Activate the required environment for running simulations.
   ```bash
   source activate openmm
   ```

2. **Set Up the Simulation Folder:**
   Create a simulation folder using the `awsem_create` command. The awsem_create command will automatically download the corresponding pdb.
   ```bash
   awsem_create 1r69 --frag
   ```
   Alternatively, if you have the `1r69.pdb` file:
   ```bash
   awsem_create 1r69.pdb --frag
   ```

3. **Modify the forces_setup.py**

   The `forces_setup.py` script determines which force (energy) terms are included in the simulation. 
   To activate the fragment memory term uncomment the fragment memory term and comment the single memory term.
   ```python
      # templateTerms.fragment_memory_term(oa, frag_file_list_file="./frags.mem", npy_frag_table="./frags.npy", UseSavedFragTable=True),
        templateTerms.fragment_memory_term(oa, frag_file_list_file="./single_frags.mem", npy_frag_table="./single_frags.npy", UseSavedFragTable=False),
   ```
   It should look like this:
   ```python
        templateTerms.fragment_memory_term(oa, frag_file_list_file="./frags.mem", npy_frag_table="./frags.npy", UseSavedFragTable=False),
      #  templateTerms.fragment_memory_term(oa, frag_file_list_file="./single_frags.mem", npy_frag_table="./single_frags.npy", UseSavedFragTable=False),
   ```
3. **Run the Simulation:**
   Execute the simulation using the `awsem_run` command, specifying the platform, number of steps, and start and end temperatures for the annealing simulation.
   As an example we are running 1e5 steps, but it is common to run from 5 to 30 million steps in a single run.
   
   ```bash
   awsem_run 1r69 --platform CPU --steps 1e5 --tempStart 800 --tempEnd 200 -f forces_setup.py
   ```

4. **Compute Energy and Q:**
   Analyze the simulation results and redirect the output to `info.dat`.
   ```bash
   awsem_analyze 1r69 > info.dat
   ```

5. **Run Local Scripts (Optional):**
   The scripts are copied to the project folder and can be modified as needed. To run the local scripts, use the following commands:
   ```bash
   ./mm_run.py 1r69 --platform CPU --steps 1e5 --tempStart 800 --tempEnd 200 -f forces_setup.py
   ./mm_analyze.py 1r69 > energy.dat
   ```

## Notes:
For small proteins, the LAMMPS version may be faster than OpenAWSEM, especially if a GPU is unavailable. Consider using http://awsem-md.org for such cases.
A quick check of the stability of a protein in AWSEM can be done using the frustratometer server http://frustratometer.qb.fcen.uba.ar/

## Data availability
Data related to the paper "OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations" is available at https://app.globus.org/file-manager?origin_id=b4cef8ce-7773-4016-8513-829f388f7986&origin_path=%2FopenAWSEM_data%2F

## Citation
Please cite the following paper when using OpenAWSEM:
Lu, W., Bueno, C., Schafer, N. P., Moller, J., Jin, S., Chen, X., ... & Wolynes, P. G. (2021). OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations. PLoS computational biology, 17(2), e1008308. https://doi.org/10.1371/journal.pcbi.1008308

            

Raw data

            {
    "_id": null,
    "home_page": "https://openawsem.org/",
    "name": "openawsem",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "Carlos Bueno",
    "author_email": "carlos.bueno@rice.edu",
    "download_url": "https://files.pythonhosted.org/packages/31/46/d8ef9e18e71f34afb9df43fcb6b6822014c46075f6b1be9eaf435db243a7/openawsem-1.1.1.tar.gz",
    "platform": null,
    "description": "# OpenAWSEM\n## An implementation of the AWSEM coarse-grained protein folding forcefield in OpenMM\n\nOpenAWSEM is an implementation of the AWSEM (Associative memory, Water-mediated Structure, and Energy Model) coarse-grained protein forcefield designed for use with the OpenMM simulation toolkit.\n\n## Installation\n\n### Conda\n\nTo install OpenAWSEM using Conda, execute the following command:\n\n```bash\nconda install -c conda-forge openawsem\n```\n\n### Git\n\nThis installation mode is recommended for users that want to contribute to the code and Wolynes lab members.\n\n```bash\n#Clone the awsem repository\ngit clone https://github.com/cabb99/openawsem.git\ncd openawsem\n\n# Create a new conda environment\nconda create -n openawsem --file requirements.txt\nconda activate openawsem\n\n# Install the package in editable mode\npip install -e .\n```\n\n## Requirements\n\n### STRIDE\nSTRIDE is used for secondary structure prediction. \nDownload and install STRIDE and add it to your PATH:\nhttps://webclu.bio.wzw.tum.de/stride/\n```bash\nwget https://webclu.bio.wzw.tum.de/stride/stride.tar.gz\ntar -xvzf stride.tar.gz\ncd stride\nmake\necho 'export PATH=$PATH:'`pwd` >> ~/.bashrc\n```\n\n### PSIBLAST    \nInstall psiblast using the distribution from bioconda:\n\n```\nconda install -c bioconda blast\n```\n\nAlternatively Download and install psiblast and add it to your PATH: \nftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/\n\n```bash\nwget https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/$(curl -s \"https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/\" | grep -o 'ncbi-blast-[0-9.]*+-x64-linux.tar.gz'| head -n 1)\ntar -xvzf ncbi-*.tar.gz\ncd ncbi*/bin\necho 'export PATH=$PATH:'`pwd` >> ~/.bashrc\n```\n\n### PDB_SEQRES.txt\n* Download pdb_seqres.txt and put it in the cloned openawsem repository location\n```\nwget ftp://ftp.wwpdb.org/pub/pdb/derived_data/pdb_seqres.txt\nOPENAWSEM_LOCATION=$(python -c \"import openawsem; print(openawsem.__location__)\")\ncp pdb_seqres.txt $OPENAWSEM_LOCATION/data\n\n```\n\n## Configuration\nOpenAWSEM allows users to configure data storage paths. To do this:\n\nCreate a .awsem directory in your home folder.\nInside .awsem, create a configuration file named config.ini to specify data paths. \nThe default paths point to the local data directory inside the OpenAWSEM module.\nExample config.ini:\n\n```\n[Data Paths]\nblast = /home/USER/data/database/cullpdb_pc80_res3.0_R1.0_d160504_chains29712\ngro = /home/USER/data/Gros\npdb = /home/USER/data/PDBs\nindex = /home/USER/data/Indices\npdbfail = /home/USER/data/notExistPDBsList\npdbseqres = /home/USER/data/pdb_seqres.txt\ntopology = /home/USER/topology\n```\n\n## Example\nSimulation of the amino terminal domain of Phage 434 repressor (1r69)\n\n1. **Activate the OpenMM Environment:**\n   Activate the required environment for running simulations.\n   ```bash\n   source activate openmm\n   ```\n\n2. **Set Up the Simulation Folder:**\n   Create a simulation folder using the `awsem_create` command. The awsem_create command will automatically download the corresponding pdb.\n   ```bash\n   awsem_create 1r69 --frag\n   ```\n   Alternatively, if you have the `1r69.pdb` file:\n   ```bash\n   awsem_create 1r69.pdb --frag\n   ```\n\n3. **Modify the forces_setup.py**\n\n   The `forces_setup.py` script determines which force (energy) terms are included in the simulation. \n   To activate the fragment memory term uncomment the fragment memory term and comment the single memory term.\n   ```python\n      # templateTerms.fragment_memory_term(oa, frag_file_list_file=\"./frags.mem\", npy_frag_table=\"./frags.npy\", UseSavedFragTable=True),\n        templateTerms.fragment_memory_term(oa, frag_file_list_file=\"./single_frags.mem\", npy_frag_table=\"./single_frags.npy\", UseSavedFragTable=False),\n   ```\n   It should look like this:\n   ```python\n        templateTerms.fragment_memory_term(oa, frag_file_list_file=\"./frags.mem\", npy_frag_table=\"./frags.npy\", UseSavedFragTable=False),\n      #  templateTerms.fragment_memory_term(oa, frag_file_list_file=\"./single_frags.mem\", npy_frag_table=\"./single_frags.npy\", UseSavedFragTable=False),\n   ```\n3. **Run the Simulation:**\n   Execute the simulation using the `awsem_run` command, specifying the platform, number of steps, and start and end temperatures for the annealing simulation.\n   As an example we are running 1e5 steps, but it is common to run from 5 to 30 million steps in a single run.\n   \n   ```bash\n   awsem_run 1r69 --platform CPU --steps 1e5 --tempStart 800 --tempEnd 200 -f forces_setup.py\n   ```\n\n4. **Compute Energy and Q:**\n   Analyze the simulation results and redirect the output to `info.dat`.\n   ```bash\n   awsem_analyze 1r69 > info.dat\n   ```\n\n5. **Run Local Scripts (Optional):**\n   The scripts are copied to the project folder and can be modified as needed. To run the local scripts, use the following commands:\n   ```bash\n   ./mm_run.py 1r69 --platform CPU --steps 1e5 --tempStart 800 --tempEnd 200 -f forces_setup.py\n   ./mm_analyze.py 1r69 > energy.dat\n   ```\n\n## Notes:\nFor small proteins, the LAMMPS version may be faster than OpenAWSEM, especially if a GPU is unavailable. Consider using http://awsem-md.org for such cases.\nA quick check of the stability of a protein in AWSEM can be done using the frustratometer server http://frustratometer.qb.fcen.uba.ar/\n\n## Data availability\nData related to the paper \"OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations\" is available at https://app.globus.org/file-manager?origin_id=b4cef8ce-7773-4016-8513-829f388f7986&origin_path=%2FopenAWSEM_data%2F\n\n## Citation\nPlease cite the following paper when using OpenAWSEM:\nLu, W., Bueno, C., Schafer, N. P., Moller, J., Jin, S., Chen, X., ... & Wolynes, P. G. (2021). OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations. PLoS computational biology, 17(2), e1008308. https://doi.org/10.1371/journal.pcbi.1008308\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Calculates single residue frustration, and mutational frustration of proteins.",
    "version": "1.1.1",
    "project_urls": {
        "Homepage": "https://openawsem.org/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a87b26764a63e31f0cab4fbf469aa603f2d111cbbd665c493035dfc555cc1127",
                "md5": "de1cca5ac262d057754fdb166f86a6f8",
                "sha256": "3fe3db7c1ad8d95da3a0e29ef378cf90c68675bddbab6007969ab211aad60594"
            },
            "downloads": -1,
            "filename": "openawsem-1.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "de1cca5ac262d057754fdb166f86a6f8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13788338,
            "upload_time": "2023-11-04T20:03:56",
            "upload_time_iso_8601": "2023-11-04T20:03:56.468904Z",
            "url": "https://files.pythonhosted.org/packages/a8/7b/26764a63e31f0cab4fbf469aa603f2d111cbbd665c493035dfc555cc1127/openawsem-1.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3146d8ef9e18e71f34afb9df43fcb6b6822014c46075f6b1be9eaf435db243a7",
                "md5": "3783fa66a859f0306ec73304e018b434",
                "sha256": "0870ee19431d1977cd85f1a000b8984416cf78f02d15b8292e13fb648df4cc5a"
            },
            "downloads": -1,
            "filename": "openawsem-1.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3783fa66a859f0306ec73304e018b434",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 13703169,
            "upload_time": "2023-11-04T20:03:59",
            "upload_time_iso_8601": "2023-11-04T20:03:59.859454Z",
            "url": "https://files.pythonhosted.org/packages/31/46/d8ef9e18e71f34afb9df43fcb6b6822014c46075f6b1be9eaf435db243a7/openawsem-1.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-04 20:03:59",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "openawsem"
}
        
Elapsed time: 0.14796s