openfinops


Nameopenfinops JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryOpen Source FinOps Platform for AI/ML Cost Observability with Intelligent LLM-Powered Recommendations
upload_time2025-10-06 23:59:58
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseApache-2.0
keywords finops cost-optimization observability ai-ml cloud-cost aws azure gcp openai anthropic llm-monitoring rag-monitoring cost-attribution visualization dashboard telemetry multi-cloud intelligent-recommendations hardware-optimization gpu-optimization scaling-recommendations auto-scaling llm-powered claude
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🌟 OpenFinOps

**Open Source FinOps Platform for AI/ML Cost Observability and Optimization**

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![PyPI version](https://img.shields.io/pypi/v/openfinops.svg)](https://pypi.org/project/openfinops/)
[![PyPI downloads](https://img.shields.io/pypi/dm/openfinops.svg)](https://pypi.org/project/openfinops/)
[![Total downloads](https://pepy.tech/badge/openfinops)](https://pepy.tech/project/openfinops)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](CONTRIBUTING.md)

## 🎯 Overview

OpenFinOps is a comprehensive, open-source platform for tracking, analyzing, and optimizing costs across AI/ML infrastructure and operations. It provides real-time visibility into:

- **LLM Training Costs** - Track GPU utilization, training jobs, and compute expenses
- **RAG Pipeline Monitoring** - Monitor vector databases, embeddings, and retrieval costs
- **Multi-Cloud Cost Tracking** - Unified view across AWS, Azure, GCP
- **AI API Usage** - Track OpenAI, Anthropic, and other LLM API costs
- **Executive Dashboards** - Role-based views for CFO, COO, Infrastructure Leaders
- **Cost Attribution** - Per-model, per-team, per-project cost breakdown
- **AI-Powered Optimization** - Intelligent recommendations for cost savings

## ✨ Key Features

### 📊 Comprehensive Observability
- **Real-time Monitoring**: Live metrics for all AI/ML operations
- **Multi-Cloud Support**: AWS, Azure, GCP telemetry integration
- **LLM Training Tracking**: GPU utilization, loss curves, cost per epoch
- **RAG Analytics**: Document processing, embedding generation, retrieval accuracy
- **API Cost Tracking**: OpenAI, Anthropic, and custom API endpoints

### 💰 FinOps Intelligence
- **Cost Observatory**: Centralized cost tracking and analysis
- **Cost Attribution**: Per-model, per-project, per-team breakdowns
- **Budget Management**: Set budgets, track spending, get alerts
- **Optimization Recommendations**: AI-powered cost-saving suggestions
- **Trend Analysis**: Historical cost patterns and forecasting

### 📈 Professional Visualizations
- **VizlyChart**: Built-in visualization library for charts and graphs
- **Executive Dashboards**: Role-based dashboards (CFO, COO, Infrastructure)
- **Real-time Charts**: Live updating metrics and KPIs
- **Custom Reports**: Generate and export custom cost reports

### 🔐 Enterprise-Grade Security
- **Role-Based Access Control (RBAC)**: Fine-grained permissions
- **IAM Integration**: Identity and access management system
- **Audit Logging**: Complete audit trail for all operations
- **Secure API**: Authentication and authorization built-in

### 🚀 Easy Deployment
- **Docker Support**: Containerized deployment ready
- **Kubernetes Ready**: Helm charts for K8s deployment
- **Cloud-Native**: Deploy on any cloud provider
- **On-Premise**: Run in your own datacenter

## 🏗️ Architecture

```
openfinops/
├── observability/          # Core observability platform
│   ├── observability_hub.py        # Central monitoring hub
│   ├── llm_observability.py        # LLM training & RAG monitoring
│   ├── finops_dashboards.py        # FinOps dashboards
│   ├── cost_observatory.py         # Cost tracking
│   ├── cost_reporting.py           # Cost reporting
│   ├── ai_recommendations.py       # AI-powered optimization
│   └── alerting_engine.py          # Intelligent alerting
│
├── vizlychart/             # Visualization library
│   ├── charts/                     # Chart implementations
│   ├── rendering/                  # Rendering engine
│   └── core/                       # Core utilities
│
├── dashboard/              # Role-based dashboards
│   ├── cfo_dashboard.py            # CFO financial view
│   ├── coo_dashboard.py            # COO operations view
│   ├── infrastructure_leader_dashboard.py
│   └── iam_system.py               # Access control
│
└── agents/                 # Cloud telemetry agents
    ├── aws_telemetry_agent.py
    ├── azure_telemetry_agent.py
    ├── gcp_telemetry_agent.py
    └── generic_telemetry_agent.py
```

## 🚀 Quick Start

### Installation

```bash
# Install from source
git clone https://github.com/openfinops/openfinops.git
cd openfinops
pip install -e .

# Or with all features
pip install -e ".[all]"

# Or specific cloud providers
pip install -e ".[aws,azure,gcp]"
```

### Basic Usage

```python
from openfinops.observability import ObservabilityHub
from openfinops.observability import LLMObservabilityHub

# Initialize observability
hub = ObservabilityHub()
llm_hub = LLMObservabilityHub()

# Register training cluster
llm_hub.register_training_cluster(
    cluster_name="gpu-cluster-1",
    nodes=["node-1", "node-2"]
)

# Track training metrics
llm_hub.track_training_metrics(
    model_id="gpt-custom",
    epoch=1,
    step=100,
    loss=0.5,
    gpu_memory_usage=8000
)

# Get cost summary
cost_summary = hub.get_cost_summary()
print(f"Total spend: ${cost_summary['total']}")
```

### Running the Dashboard

```bash
# Start the web dashboard
openfinops-dashboard

# Or with custom port
openfinops-dashboard --port 8080

# Access at http://localhost:8080
```

## 📚 Documentation

- **[Installation Guide](docs/installation.md)** - Detailed installation instructions
- **[Quick Start](docs/quickstart.md)** - Get started in 5 minutes
- **[API Reference](docs/api-reference.md)** - Complete API documentation
- **[Architecture](docs/architecture.md)** - System architecture overview
- **[Deployment Guide](docs/deployment.md)** - Production deployment guide
- **[Contributing](CONTRIBUTING.md)** - How to contribute

## 🎯 Use Cases

### For Engineering Teams
- Monitor LLM training job costs in real-time
- Track GPU utilization and optimize resource allocation
- Debug cost anomalies and inefficiencies
- Set up alerts for budget overruns

### For Finance Teams
- Get complete visibility into AI/ML spending
- Track cost attribution by team, project, or model
- Generate reports for stakeholders
- Forecast future AI infrastructure costs

### For Leadership
- Executive dashboards with key metrics
- ROI analysis for AI initiatives
- Budget vs. actual spending tracking
- Strategic cost optimization recommendations

## 🌐 Multi-Cloud Support

OpenFinOps supports telemetry from:

- **AWS**: CloudWatch metrics, Cost Explorer, EC2, SageMaker
- **Azure**: Azure Monitor, Cost Management, Azure ML
- **GCP**: Cloud Monitoring, Cloud Billing, Vertex AI
- **AI Platforms**: OpenAI, Anthropic, Hugging Face, Custom APIs

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

### Development Setup

```bash
# Clone the repository
git clone https://github.com/openfinops/openfinops.git
cd openfinops

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src/ tests/
ruff check src/ tests/
```

## 📊 Roadmap

- [ ] Kubernetes operator for auto-scaling based on cost
- [ ] Integration with Prometheus and Grafana
- [ ] Support for more AI platforms (Cohere, AI21, etc.)
- [ ] Advanced anomaly detection with ML models
- [ ] Mobile app for cost monitoring
- [ ] Slack/Teams integration for alerts
- [ ] Custom webhook support
- [ ] Cost allocation tagging system

## 📄 License

OpenFinOps is licensed under the Apache License 2.0. See [LICENSE](LICENSE) for details.

## 🙏 Acknowledgments

OpenFinOps is built with inspiration from the FinOps Foundation principles and best practices from the cloud cost optimization community.

## 📝 Citing OpenFinOps

If you use OpenFinOps in your research, please cite it using the following references:

### BibTeX

```bibtex
@software{openfinops2024,
  title = {{OpenFinOps}: Open Source FinOps Platform for AI/ML Cost Observability and Optimization},
  author = {Durai and {OpenFinOps Contributors}},
  year = {2024},
  month = {10},
  version = {0.1.0},
  url = {https://github.com/rdmurugan/OpenFinOps},
  license = {Apache-2.0},
  keywords = {finops, cost-optimization, observability, ai-ml, cloud-cost, llm-monitoring}
}


## 📞 Support

- **GitHub Issues**: [Report bugs or request features](https://github.com/openfinops/openfinops/issues)
- **Discussions**: [Community discussions](https://github.com/openfinops/openfinops/discussions)
- **Email**: durai@infinidatum.net

## ⭐ Star Us!

If you find OpenFinOps useful, please consider giving us a star on GitHub! It helps the project grow and reach more users.

---

**Made with ❤️ by the OpenFinOps community**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "openfinops",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "OpenFinOps Contributors <durai@infinidatum.net>",
    "keywords": "finops, cost-optimization, observability, ai-ml, cloud-cost, aws, azure, gcp, openai, anthropic, llm-monitoring, rag-monitoring, cost-attribution, visualization, dashboard, telemetry, multi-cloud, intelligent-recommendations, hardware-optimization, gpu-optimization, scaling-recommendations, auto-scaling, llm-powered, claude",
    "author": null,
    "author_email": "OpenFinOps Contributors <durai@infinidatum.net>",
    "download_url": "https://files.pythonhosted.org/packages/8c/d9/61f5e8f61d74327079a9a5bd4e713a0ece45c13a4982e66149a862317244/openfinops-0.2.1.tar.gz",
    "platform": null,
    "description": "# \ud83c\udf1f OpenFinOps\n\n**Open Source FinOps Platform for AI/ML Cost Observability and Optimization**\n\n[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\n[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![PyPI version](https://img.shields.io/pypi/v/openfinops.svg)](https://pypi.org/project/openfinops/)\n[![PyPI downloads](https://img.shields.io/pypi/dm/openfinops.svg)](https://pypi.org/project/openfinops/)\n[![Total downloads](https://pepy.tech/badge/openfinops)](https://pepy.tech/project/openfinops)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](CONTRIBUTING.md)\n\n## \ud83c\udfaf Overview\n\nOpenFinOps is a comprehensive, open-source platform for tracking, analyzing, and optimizing costs across AI/ML infrastructure and operations. It provides real-time visibility into:\n\n- **LLM Training Costs** - Track GPU utilization, training jobs, and compute expenses\n- **RAG Pipeline Monitoring** - Monitor vector databases, embeddings, and retrieval costs\n- **Multi-Cloud Cost Tracking** - Unified view across AWS, Azure, GCP\n- **AI API Usage** - Track OpenAI, Anthropic, and other LLM API costs\n- **Executive Dashboards** - Role-based views for CFO, COO, Infrastructure Leaders\n- **Cost Attribution** - Per-model, per-team, per-project cost breakdown\n- **AI-Powered Optimization** - Intelligent recommendations for cost savings\n\n## \u2728 Key Features\n\n### \ud83d\udcca Comprehensive Observability\n- **Real-time Monitoring**: Live metrics for all AI/ML operations\n- **Multi-Cloud Support**: AWS, Azure, GCP telemetry integration\n- **LLM Training Tracking**: GPU utilization, loss curves, cost per epoch\n- **RAG Analytics**: Document processing, embedding generation, retrieval accuracy\n- **API Cost Tracking**: OpenAI, Anthropic, and custom API endpoints\n\n### \ud83d\udcb0 FinOps Intelligence\n- **Cost Observatory**: Centralized cost tracking and analysis\n- **Cost Attribution**: Per-model, per-project, per-team breakdowns\n- **Budget Management**: Set budgets, track spending, get alerts\n- **Optimization Recommendations**: AI-powered cost-saving suggestions\n- **Trend Analysis**: Historical cost patterns and forecasting\n\n### \ud83d\udcc8 Professional Visualizations\n- **VizlyChart**: Built-in visualization library for charts and graphs\n- **Executive Dashboards**: Role-based dashboards (CFO, COO, Infrastructure)\n- **Real-time Charts**: Live updating metrics and KPIs\n- **Custom Reports**: Generate and export custom cost reports\n\n### \ud83d\udd10 Enterprise-Grade Security\n- **Role-Based Access Control (RBAC)**: Fine-grained permissions\n- **IAM Integration**: Identity and access management system\n- **Audit Logging**: Complete audit trail for all operations\n- **Secure API**: Authentication and authorization built-in\n\n### \ud83d\ude80 Easy Deployment\n- **Docker Support**: Containerized deployment ready\n- **Kubernetes Ready**: Helm charts for K8s deployment\n- **Cloud-Native**: Deploy on any cloud provider\n- **On-Premise**: Run in your own datacenter\n\n## \ud83c\udfd7\ufe0f Architecture\n\n```\nopenfinops/\n\u251c\u2500\u2500 observability/          # Core observability platform\n\u2502   \u251c\u2500\u2500 observability_hub.py        # Central monitoring hub\n\u2502   \u251c\u2500\u2500 llm_observability.py        # LLM training & RAG monitoring\n\u2502   \u251c\u2500\u2500 finops_dashboards.py        # FinOps dashboards\n\u2502   \u251c\u2500\u2500 cost_observatory.py         # Cost tracking\n\u2502   \u251c\u2500\u2500 cost_reporting.py           # Cost reporting\n\u2502   \u251c\u2500\u2500 ai_recommendations.py       # AI-powered optimization\n\u2502   \u2514\u2500\u2500 alerting_engine.py          # Intelligent alerting\n\u2502\n\u251c\u2500\u2500 vizlychart/             # Visualization library\n\u2502   \u251c\u2500\u2500 charts/                     # Chart implementations\n\u2502   \u251c\u2500\u2500 rendering/                  # Rendering engine\n\u2502   \u2514\u2500\u2500 core/                       # Core utilities\n\u2502\n\u251c\u2500\u2500 dashboard/              # Role-based dashboards\n\u2502   \u251c\u2500\u2500 cfo_dashboard.py            # CFO financial view\n\u2502   \u251c\u2500\u2500 coo_dashboard.py            # COO operations view\n\u2502   \u251c\u2500\u2500 infrastructure_leader_dashboard.py\n\u2502   \u2514\u2500\u2500 iam_system.py               # Access control\n\u2502\n\u2514\u2500\u2500 agents/                 # Cloud telemetry agents\n    \u251c\u2500\u2500 aws_telemetry_agent.py\n    \u251c\u2500\u2500 azure_telemetry_agent.py\n    \u251c\u2500\u2500 gcp_telemetry_agent.py\n    \u2514\u2500\u2500 generic_telemetry_agent.py\n```\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\n# Install from source\ngit clone https://github.com/openfinops/openfinops.git\ncd openfinops\npip install -e .\n\n# Or with all features\npip install -e \".[all]\"\n\n# Or specific cloud providers\npip install -e \".[aws,azure,gcp]\"\n```\n\n### Basic Usage\n\n```python\nfrom openfinops.observability import ObservabilityHub\nfrom openfinops.observability import LLMObservabilityHub\n\n# Initialize observability\nhub = ObservabilityHub()\nllm_hub = LLMObservabilityHub()\n\n# Register training cluster\nllm_hub.register_training_cluster(\n    cluster_name=\"gpu-cluster-1\",\n    nodes=[\"node-1\", \"node-2\"]\n)\n\n# Track training metrics\nllm_hub.track_training_metrics(\n    model_id=\"gpt-custom\",\n    epoch=1,\n    step=100,\n    loss=0.5,\n    gpu_memory_usage=8000\n)\n\n# Get cost summary\ncost_summary = hub.get_cost_summary()\nprint(f\"Total spend: ${cost_summary['total']}\")\n```\n\n### Running the Dashboard\n\n```bash\n# Start the web dashboard\nopenfinops-dashboard\n\n# Or with custom port\nopenfinops-dashboard --port 8080\n\n# Access at http://localhost:8080\n```\n\n## \ud83d\udcda Documentation\n\n- **[Installation Guide](docs/installation.md)** - Detailed installation instructions\n- **[Quick Start](docs/quickstart.md)** - Get started in 5 minutes\n- **[API Reference](docs/api-reference.md)** - Complete API documentation\n- **[Architecture](docs/architecture.md)** - System architecture overview\n- **[Deployment Guide](docs/deployment.md)** - Production deployment guide\n- **[Contributing](CONTRIBUTING.md)** - How to contribute\n\n## \ud83c\udfaf Use Cases\n\n### For Engineering Teams\n- Monitor LLM training job costs in real-time\n- Track GPU utilization and optimize resource allocation\n- Debug cost anomalies and inefficiencies\n- Set up alerts for budget overruns\n\n### For Finance Teams\n- Get complete visibility into AI/ML spending\n- Track cost attribution by team, project, or model\n- Generate reports for stakeholders\n- Forecast future AI infrastructure costs\n\n### For Leadership\n- Executive dashboards with key metrics\n- ROI analysis for AI initiatives\n- Budget vs. actual spending tracking\n- Strategic cost optimization recommendations\n\n## \ud83c\udf10 Multi-Cloud Support\n\nOpenFinOps supports telemetry from:\n\n- **AWS**: CloudWatch metrics, Cost Explorer, EC2, SageMaker\n- **Azure**: Azure Monitor, Cost Management, Azure ML\n- **GCP**: Cloud Monitoring, Cloud Billing, Vertex AI\n- **AI Platforms**: OpenAI, Anthropic, Hugging Face, Custom APIs\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n### Development Setup\n\n```bash\n# Clone the repository\ngit clone https://github.com/openfinops/openfinops.git\ncd openfinops\n\n# Create virtual environment\npython -m venv venv\nsource venv/bin/activate  # On Windows: venv\\Scripts\\activate\n\n# Install development dependencies\npip install -e \".[dev]\"\n\n# Run tests\npytest\n\n# Format code\nblack src/ tests/\nruff check src/ tests/\n```\n\n## \ud83d\udcca Roadmap\n\n- [ ] Kubernetes operator for auto-scaling based on cost\n- [ ] Integration with Prometheus and Grafana\n- [ ] Support for more AI platforms (Cohere, AI21, etc.)\n- [ ] Advanced anomaly detection with ML models\n- [ ] Mobile app for cost monitoring\n- [ ] Slack/Teams integration for alerts\n- [ ] Custom webhook support\n- [ ] Cost allocation tagging system\n\n## \ud83d\udcc4 License\n\nOpenFinOps is licensed under the Apache License 2.0. See [LICENSE](LICENSE) for details.\n\n## \ud83d\ude4f Acknowledgments\n\nOpenFinOps is built with inspiration from the FinOps Foundation principles and best practices from the cloud cost optimization community.\n\n## \ud83d\udcdd Citing OpenFinOps\n\nIf you use OpenFinOps in your research, please cite it using the following references:\n\n### BibTeX\n\n```bibtex\n@software{openfinops2024,\n  title = {{OpenFinOps}: Open Source FinOps Platform for AI/ML Cost Observability and Optimization},\n  author = {Durai and {OpenFinOps Contributors}},\n  year = {2024},\n  month = {10},\n  version = {0.1.0},\n  url = {https://github.com/rdmurugan/OpenFinOps},\n  license = {Apache-2.0},\n  keywords = {finops, cost-optimization, observability, ai-ml, cloud-cost, llm-monitoring}\n}\n\n\n## \ud83d\udcde Support\n\n- **GitHub Issues**: [Report bugs or request features](https://github.com/openfinops/openfinops/issues)\n- **Discussions**: [Community discussions](https://github.com/openfinops/openfinops/discussions)\n- **Email**: durai@infinidatum.net\n\n## \u2b50 Star Us!\n\nIf you find OpenFinOps useful, please consider giving us a star on GitHub! It helps the project grow and reach more users.\n\n---\n\n**Made with \u2764\ufe0f by the OpenFinOps community**\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Open Source FinOps Platform for AI/ML Cost Observability with Intelligent LLM-Powered Recommendations",
    "version": "0.2.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/openfinops/openfinops/issues",
        "Documentation": "https://openfinops.readthedocs.io/",
        "Homepage": "https://github.com/openfinops/openfinops",
        "Repository": "https://github.com/openfinops/openfinops"
    },
    "split_keywords": [
        "finops",
        " cost-optimization",
        " observability",
        " ai-ml",
        " cloud-cost",
        " aws",
        " azure",
        " gcp",
        " openai",
        " anthropic",
        " llm-monitoring",
        " rag-monitoring",
        " cost-attribution",
        " visualization",
        " dashboard",
        " telemetry",
        " multi-cloud",
        " intelligent-recommendations",
        " hardware-optimization",
        " gpu-optimization",
        " scaling-recommendations",
        " auto-scaling",
        " llm-powered",
        " claude"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "905e5c494c4fa20144eaf1abd7a5717681e735a3c3236a5f3c51b6f9d05cbc8c",
                "md5": "2d83263c2d67185362f50218e8e246f5",
                "sha256": "5d143cd71dc714be9a2ca9bda8a698001826e61ea0389b89ae007b6c205650db"
            },
            "downloads": -1,
            "filename": "openfinops-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2d83263c2d67185362f50218e8e246f5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 864521,
            "upload_time": "2025-10-06T23:59:56",
            "upload_time_iso_8601": "2025-10-06T23:59:56.895129Z",
            "url": "https://files.pythonhosted.org/packages/90/5e/5c494c4fa20144eaf1abd7a5717681e735a3c3236a5f3c51b6f9d05cbc8c/openfinops-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8cd961f5e8f61d74327079a9a5bd4e713a0ece45c13a4982e66149a862317244",
                "md5": "52505657a3db96cb61eec3bb9007b92d",
                "sha256": "89dff9cc7d2f0364cfaf17daa78e9dc3a8fd98124ba9bf96931a59827ed8c2e4"
            },
            "downloads": -1,
            "filename": "openfinops-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "52505657a3db96cb61eec3bb9007b92d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 853711,
            "upload_time": "2025-10-06T23:59:58",
            "upload_time_iso_8601": "2025-10-06T23:59:58.521611Z",
            "url": "https://files.pythonhosted.org/packages/8c/d9/61f5e8f61d74327079a9a5bd4e713a0ece45c13a4982e66149a862317244/openfinops-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-06 23:59:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openfinops",
    "github_project": "openfinops",
    "github_not_found": true,
    "lcname": "openfinops"
}
        
Elapsed time: 1.10597s