openmcmc


Nameopenmcmc JSON
Version 1.0.5 PyPI version JSON
download
home_pagehttps://sede-open.github.io/openMCMC/
SummaryopenMCMC tools
upload_time2024-07-02 06:48:23
maintainerNone
docs_urlNone
authorBas van de Kerkhof
requires_python<3.12,>=3.9
licenseApache-2.0
keywords markov chain monte carlo mcmc
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--
SPDX-FileCopyrightText: 2024 Shell Global Solutions International B.V. All Rights Reserved.

SPDX-License-Identifier: Apache-2.0
-->

<div align="center">

[![PyPI version](https://img.shields.io/pypi/v/openmcmc.svg?logo=pypi&logoColor=FFE873)](https://pypi.org/project/openmcmc/)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/openmcmc.svg?logo=python&logoColor=FFE873)](https://pypi.org/project/openmcmc/)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Code Style Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Tests](https://github.com/sede-open/openMCMC/actions/workflows/main.yml/badge.svg?branch=main)](https://github.com/sede-open/openMCMC/actions/workflows/main.yml)

[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=coverage)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Vulnerabilities](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=vulnerabilities)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Bugs](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=bugs)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Lines of Code](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=ncloc)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Duplicated Lines (%)](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=duplicated_lines_density)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Code Smells](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=code_smells)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=sqale_rating)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)
</div>

# openMCMC
openMCMC is a package for constructing Bayesian models from distributional components, and then doing parameter 
estimation using Markov Chain Monte Carlo (MCMC) methods. The package supports a number of standard distributions used 
in Bayesian modelling (e.g. Normal, gamma, uniform), and a number of simple functional forms for the parameters of 
these distributions. For a model constructed in the toolbox, a number of different MCMC algorithms are available, 
including simple random walk Metropolis-Hastings, manifold MALA, exact samplers for conjugate distribution choices, 
and reversible-jump MCMC for parameters with an unknown dimensionality.
***

# Installing openMCMC as a package
Suppose you want to use this openMCMC package in a different project.
You can install it from [PyPi](https://pypi.org/project/openmcmc/) through pip 
`pip install openmcmc`.
Or you could clone the repository and install it from the source code. After activating the environment you want to 
install openMCMC in, open a terminal, move to the main openMCMC folder
where pyproject.toml is located and run `pip install .`, optionally you can pass the `-e` flag is for editable mode.
All the main options, info and settings for the package are found in the pyproject.toml file which sits in this repo
as well.

***

# Examples
For some examples on how to use this package please check out these [Examples](https://github.com/sede-open/openMCMC/blob/main/examples)

***
# Contribution
This project welcomes contributions and suggestions. If you have a suggestion that would make this better you can 
simply open an issue with a relevant title. Don't forget to give the project a star! Thanks again!

For more details on contributing to this repository, see the [Contributing guide](https://github.com/sede-open/openMCMC/blob/main/CONTRIBUTING.md).

***
# Licensing

Distributed under the Apache License Version 2.0. See the [license file](https://github.com/sede-open/openMCMC/blob/main/LICENSE.md) for more information.


            

Raw data

            {
    "_id": null,
    "home_page": "https://sede-open.github.io/openMCMC/",
    "name": "openmcmc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.9",
    "maintainer_email": null,
    "keywords": "Markov Chain Monte Carlo, MCMC",
    "author": "Bas van de Kerkhof",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/c7/e8/2dc0132f5ad3e80583cbee95d7a64c19d98ab692359b7a06fd6655685bc0/openmcmc-1.0.5.tar.gz",
    "platform": null,
    "description": "<!--\nSPDX-FileCopyrightText: 2024 Shell Global Solutions International B.V. All Rights Reserved.\n\nSPDX-License-Identifier: Apache-2.0\n-->\n\n<div align=\"center\">\n\n[![PyPI version](https://img.shields.io/pypi/v/openmcmc.svg?logo=pypi&logoColor=FFE873)](https://pypi.org/project/openmcmc/)\n[![Supported Python versions](https://img.shields.io/pypi/pyversions/openmcmc.svg?logo=python&logoColor=FFE873)](https://pypi.org/project/openmcmc/)\n[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\n[![Code Style Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Tests](https://github.com/sede-open/openMCMC/actions/workflows/main.yml/badge.svg?branch=main)](https://github.com/sede-open/openMCMC/actions/workflows/main.yml)\n\n[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=coverage)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Vulnerabilities](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=vulnerabilities)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Bugs](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=bugs)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Lines of Code](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=ncloc)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Duplicated Lines (%)](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=duplicated_lines_density)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Code Smells](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=code_smells)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=pyelq_openmcmc&metric=sqale_rating)](https://sonarcloud.io/summary/new_code?id=pyelq_openmcmc)\n</div>\n\n# openMCMC\nopenMCMC is a package for constructing Bayesian models from distributional components, and then doing parameter \nestimation using Markov Chain Monte Carlo (MCMC) methods. The package supports a number of standard distributions used \nin Bayesian modelling (e.g. Normal, gamma, uniform), and a number of simple functional forms for the parameters of \nthese distributions. For a model constructed in the toolbox, a number of different MCMC algorithms are available, \nincluding simple random walk Metropolis-Hastings, manifold MALA, exact samplers for conjugate distribution choices, \nand reversible-jump MCMC for parameters with an unknown dimensionality.\n***\n\n# Installing openMCMC as a package\nSuppose you want to use this openMCMC package in a different project.\nYou can install it from [PyPi](https://pypi.org/project/openmcmc/) through pip \n`pip install openmcmc`.\nOr you could clone the repository and install it from the source code. After activating the environment you want to \ninstall openMCMC in, open a terminal, move to the main openMCMC folder\nwhere pyproject.toml is located and run `pip install .`, optionally you can pass the `-e` flag is for editable mode.\nAll the main options, info and settings for the package are found in the pyproject.toml file which sits in this repo\nas well.\n\n***\n\n# Examples\nFor some examples on how to use this package please check out these [Examples](https://github.com/sede-open/openMCMC/blob/main/examples)\n\n***\n# Contribution\nThis project welcomes contributions and suggestions. If you have a suggestion that would make this better you can \nsimply open an issue with a relevant title. Don't forget to give the project a star! Thanks again!\n\nFor more details on contributing to this repository, see the [Contributing guide](https://github.com/sede-open/openMCMC/blob/main/CONTRIBUTING.md).\n\n***\n# Licensing\n\nDistributed under the Apache License Version 2.0. See the [license file](https://github.com/sede-open/openMCMC/blob/main/LICENSE.md) for more information.\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "openMCMC tools",
    "version": "1.0.5",
    "project_urls": {
        "Documentation": "https://sede-open.github.io/openMCMC/",
        "Homepage": "https://sede-open.github.io/openMCMC/",
        "Repository": "https://github.com/sede-open/openMCMC"
    },
    "split_keywords": [
        "markov chain monte carlo",
        " mcmc"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd520b2b432f93b2cf91a5d518f4093160cdd832aa9d5e1ce829a50981590995",
                "md5": "0b64c514e9e29b219f7fe6ed4faa3403",
                "sha256": "5bb8192ffd0b46bfdde773cb80dce9b9575e0708ac5c15f232d24dabffb9ae97"
            },
            "downloads": -1,
            "filename": "openmcmc-1.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0b64c514e9e29b219f7fe6ed4faa3403",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.9",
            "size": 44718,
            "upload_time": "2024-07-02T06:48:21",
            "upload_time_iso_8601": "2024-07-02T06:48:21.995533Z",
            "url": "https://files.pythonhosted.org/packages/bd/52/0b2b432f93b2cf91a5d518f4093160cdd832aa9d5e1ce829a50981590995/openmcmc-1.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c7e82dc0132f5ad3e80583cbee95d7a64c19d98ab692359b7a06fd6655685bc0",
                "md5": "337affbf30a6c97e5e4b7000aac153f0",
                "sha256": "a5ad56e0fb72e8ca0708192e8df6548a5c0956064381b179bb9296458880322a"
            },
            "downloads": -1,
            "filename": "openmcmc-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "337affbf30a6c97e5e4b7000aac153f0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.9",
            "size": 35263,
            "upload_time": "2024-07-02T06:48:23",
            "upload_time_iso_8601": "2024-07-02T06:48:23.332370Z",
            "url": "https://files.pythonhosted.org/packages/c7/e8/2dc0132f5ad3e80583cbee95d7a64c19d98ab692359b7a06fd6655685bc0/openmcmc-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-02 06:48:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sede-open",
    "github_project": "openMCMC",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "openmcmc"
}
        
Elapsed time: 0.93658s