openssa


Nameopenssa JSON
Version 0.24.12.12 PyPI version JSON
download
home_pagehttps://openssa.org
SummaryOpenSSA: Small Specialist Agents for Industrial AI
upload_time2024-12-15 18:13:30
maintainerAitomatic, Inc.
docs_urlNone
authorAitomatic, Inc.
requires_python<3.14,>=3.12
licenseApache-2.0
keywords artificial intelligence a.i. ai industrial specialist specialized domain expertise knowledge
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- markdownlint-disable MD013 MD043 MD050 -->

# OpenSSA: Neurosymbolic Agentic AI for Industrial Problem-Solving

OpenSSA is an open-source neurosymbolic agentic AI framework
designed to solve complex, high-stakes problems in industries like semiconductor, energy and finance,
where consistency, accuracy and deterministic outcomes are paramount.

At the core of OpenSSA is the [__Domain-Aware Neurosymbolic Agent (DANA)__](https://arxiv.org/abs/2410.02823) architecture,
advancing generative AI from basic pattern matching and information retrieval to industrial-grade problem solving.
By integrating domain-specific knowledge with neural and symbolic planning and reasoning,
such as __Hierarchical Task Planning (HTP)__ for structuring programs
and __Observe-Orient-Decide-Act Reasoning (OODAR)__ for executing such programs,
OpenSSA DANA agents consistently deliver accurate solutions, often using much smaller models.

## Key Benefits of OpenSSA

- __Consistent and Accurate Results__ for complex industrial problems
- __Scalable Expertise__ through AI agents incorporating deep domain knowledge from human experts
- __Economical and Efficient Computation__ thanks to usage of small models
- __Full Ownership__ of intellectual property when used with open-source models such as Llama

## Getting Started

- Install with __`pip install openssa`__ _(Python 3.12 and 3.13)_
  - For bleeding-edge capabilities: __`pip install https://github.com/aitomatic/openssa/archive/main.zip`__

- Explore the `examples/` directory and developer guides and tutorials on our [documentation site](https://aitomatic.github.io/openssa)

## [API Documentation](https://aitomatic.github.io/openssa/modules)

## Contributing

We welcome contributions from the community!

- Join discussions on our [Community Forum](https://github.com/aitomatic/openssa/discussions)
- Submit pull requests for bug fixes, enhancements and new features

For detailed guidelines, refer to our [Contribution Guide](CONTRIBUTING.md).


            

Raw data

            {
    "_id": null,
    "home_page": "https://openssa.org",
    "name": "openssa",
    "maintainer": "Aitomatic, Inc.",
    "docs_url": null,
    "requires_python": "<3.14,>=3.12",
    "maintainer_email": "engineering@aitomatic.com",
    "keywords": "Artificial Intelligence, A.I., AI, industrial, specialist, specialized, domain, expertise, knowledge",
    "author": "Aitomatic, Inc.",
    "author_email": "engineering@aitomatic.com",
    "download_url": "https://files.pythonhosted.org/packages/c6/65/76a2f49403dcf0a25290ff8008e6ddabcc418e50054894290ff9c3b41186/openssa-0.24.12.12.tar.gz",
    "platform": null,
    "description": "<!-- markdownlint-disable MD013 MD043 MD050 -->\n\n# OpenSSA: Neurosymbolic Agentic AI for Industrial Problem-Solving\n\nOpenSSA is an open-source neurosymbolic agentic AI framework\ndesigned to solve complex, high-stakes problems in industries like semiconductor, energy and finance,\nwhere consistency, accuracy and deterministic outcomes are paramount.\n\nAt the core of OpenSSA is the [__Domain-Aware Neurosymbolic Agent (DANA)__](https://arxiv.org/abs/2410.02823) architecture,\nadvancing generative AI from basic pattern matching and information retrieval to industrial-grade problem solving.\nBy integrating domain-specific knowledge with neural and symbolic planning and reasoning,\nsuch as __Hierarchical Task Planning (HTP)__ for structuring programs\nand __Observe-Orient-Decide-Act Reasoning (OODAR)__ for executing such programs,\nOpenSSA DANA agents consistently deliver accurate solutions, often using much smaller models.\n\n## Key Benefits of OpenSSA\n\n- __Consistent and Accurate Results__ for complex industrial problems\n- __Scalable Expertise__ through AI agents incorporating deep domain knowledge from human experts\n- __Economical and Efficient Computation__ thanks to usage of small models\n- __Full Ownership__ of intellectual property when used with open-source models such as Llama\n\n## Getting Started\n\n- Install with __`pip install openssa`__ _(Python 3.12 and 3.13)_\n  - For bleeding-edge capabilities: __`pip install https://github.com/aitomatic/openssa/archive/main.zip`__\n\n- Explore the `examples/` directory and developer guides and tutorials on our [documentation site](https://aitomatic.github.io/openssa)\n\n## [API Documentation](https://aitomatic.github.io/openssa/modules)\n\n## Contributing\n\nWe welcome contributions from the community!\n\n- Join discussions on our [Community Forum](https://github.com/aitomatic/openssa/discussions)\n- Submit pull requests for bug fixes, enhancements and new features\n\nFor detailed guidelines, refer to our [Contribution Guide](CONTRIBUTING.md).\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "OpenSSA: Small Specialist Agents for Industrial AI",
    "version": "0.24.12.12",
    "project_urls": {
        "Documentation": "https://aitomatic.github.io/openssa",
        "Homepage": "https://openssa.org",
        "Repository": "https://github.com/aitomatic/openssa"
    },
    "split_keywords": [
        "artificial intelligence",
        " a.i.",
        " ai",
        " industrial",
        " specialist",
        " specialized",
        " domain",
        " expertise",
        " knowledge"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "88d61f8d48edf64969eee52a6ab893917a21ff11042ff62f01c5bdbe8da5a95f",
                "md5": "153de7bb346a1cf69483e022ca8fb18c",
                "sha256": "1e1a255c0a8a8c162c41d3da649c12c9d94bec6f12416900895f52248b5098c9"
            },
            "downloads": -1,
            "filename": "openssa-0.24.12.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "153de7bb346a1cf69483e022ca8fb18c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.12",
            "size": 118361,
            "upload_time": "2024-12-15T18:13:28",
            "upload_time_iso_8601": "2024-12-15T18:13:28.344752Z",
            "url": "https://files.pythonhosted.org/packages/88/d6/1f8d48edf64969eee52a6ab893917a21ff11042ff62f01c5bdbe8da5a95f/openssa-0.24.12.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c66576a2f49403dcf0a25290ff8008e6ddabcc418e50054894290ff9c3b41186",
                "md5": "e8c44626c11383be548bb6705cf02892",
                "sha256": "53ccb7950018d2c13729e508b3fa3b370a99224e95cd083c2ab78d4d06d0122e"
            },
            "downloads": -1,
            "filename": "openssa-0.24.12.12.tar.gz",
            "has_sig": false,
            "md5_digest": "e8c44626c11383be548bb6705cf02892",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.12",
            "size": 80313,
            "upload_time": "2024-12-15T18:13:30",
            "upload_time_iso_8601": "2024-12-15T18:13:30.847722Z",
            "url": "https://files.pythonhosted.org/packages/c6/65/76a2f49403dcf0a25290ff8008e6ddabcc418e50054894290ff9c3b41186/openssa-0.24.12.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-15 18:13:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aitomatic",
    "github_project": "openssa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "openssa"
}
        
Elapsed time: 0.92781s