openvino


Nameopenvino JSON
Version 2025.3.0 PyPI version JSON
download
home_pagehttps://docs.openvino.ai/2023.0/index.html
SummaryOpenVINO(TM) Runtime
upload_time2025-09-03 09:26:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseOSI Approved :: Apache Software License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<img src="https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/assets/openvino-logo-purple-black.svg" width="400px">

<h3 align="center">
Open-source software toolkit for optimizing and deploying deep learning models.
</h3>

<p align="center">
 <a href="https://docs.openvino.ai/2025/index.html"><b>Documentation</b></a> • <a href="https://blog.openvino.ai"><b>Blog</b></a> • <a href="https://docs.openvino.ai/2025/about-openvino/key-features.html"><b>Key Features</b></a> • <a href="https://docs.openvino.ai/2025/get-started/learn-openvino.html"><b>Tutorials</b></a> • <a href="https://docs.openvino.ai/2025/documentation/openvino-ecosystem.html"><b>Integrations</b></a> • <a href="https://docs.openvino.ai/2025/about-openvino/performance-benchmarks.html"><b>Benchmarks</b></a> • <a href="https://github.com/openvinotoolkit/openvino.genai"><b>Generative AI</b></a>
</p>

[![PyPI Status](https://badge.fury.io/py/openvino.svg)](https://badge.fury.io/py/openvino)
[![Anaconda Status](https://anaconda.org/conda-forge/openvino/badges/version.svg)](https://anaconda.org/conda-forge/openvino)
[![brew Status](https://img.shields.io/homebrew/v/openvino)](https://formulae.brew.sh/formula/openvino)

[![PyPI Downloads](https://static.pepy.tech/badge/openvino)](https://pepy.tech/project/openvino)
[![Anaconda Downloads](https://anaconda.org/conda-forge/libopenvino/badges/downloads.svg)](https://anaconda.org/conda-forge/openvino/files)
[![brew Downloads](https://img.shields.io/homebrew/installs/dy/openvino)](https://formulae.brew.sh/formula/openvino)
 </div>


- **Inference Optimization**: Boost deep learning performance in computer vision, automatic speech recognition, generative AI, natural language processing with large and small language models, and many other common tasks.
- **Flexible Model Support**: Use models trained with popular frameworks such as PyTorch, TensorFlow, ONNX, Keras, PaddlePaddle, and JAX/Flax. Directly integrate models built with transformers and diffusers from the Hugging Face Hub using Optimum Intel. Convert and deploy models without original frameworks.
- **Broad Platform Compatibility**: Reduce resource demands and efficiently deploy on a range of platforms from edge to cloud. OpenVINO™ supports inference on CPU (x86, ARM), GPU (Intel integrated & discrete GPU) and AI accelerators (Intel NPU).
- **Community and Ecosystem**: Join an active community contributing to the enhancement of deep learning performance across various domains.

Check out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2025/_static/download/OpenVINO_Quick_Start_Guide.pdf) and [Key Features](https://docs.openvino.ai/2025/about-openvino/key-features.html) for a quick reference.


## Installation

[Get your preferred distribution of OpenVINO](https://docs.openvino.ai/2025/get-started/install-openvino.html) or use this command for quick installation:

```sh
pip install -U openvino
```

Check [system requirements](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino/system-requirements.html) and [supported devices](https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html) for detailed information.

## Tutorials and Examples

[OpenVINO Quickstart example](https://docs.openvino.ai/2025/get-started.html) will walk you through the basics of deploying your first model.

Learn how to optimize and deploy popular models with the [OpenVINO Notebooks](https://github.com/openvinotoolkit/openvino_notebooks)📚:
- [Create an LLM-powered Chatbot using OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/llm-chatbot-generate-api.ipynb)
- [YOLOv11 Optimization](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/yolov11-optimization/yolov11-object-detection.ipynb)
- [Text-to-Image Generation](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/text-to-image-genai/text-to-image-genai.ipynb)
- [Multimodal assistant with LLaVa and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llava-multimodal-chatbot/llava-multimodal-chatbot-genai.ipynb)
- [Automatic speech recognition using Whisper and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/whisper-asr-genai/whisper-asr-genai.ipynb)

Discover more examples in the [OpenVINO Samples (Python & C++)](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples.html) and [Notebooks (Python)](https://docs.openvino.ai/2025/get-started/learn-openvino/interactive-tutorials-python.html).

Here are easy-to-follow code examples demonstrating how to run PyTorch and TensorFlow model inference using OpenVINO:

**PyTorch Model**

```python
import openvino as ov
import torch
import torchvision

# load PyTorch model into memory
model = torch.hub.load("pytorch/vision", "shufflenet_v2_x1_0", weights="DEFAULT")

# convert the model into OpenVINO model
example = torch.randn(1, 3, 224, 224)
ov_model = ov.convert_model(model, example_input=(example,))

# compile the model for CPU device
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')

# infer the model on random data
output = compiled_model({0: example.numpy()})
```

**TensorFlow Model**

```python
import numpy as np
import openvino as ov
import tensorflow as tf

# load TensorFlow model into memory
model = tf.keras.applications.MobileNetV2(weights='imagenet')

# convert the model into OpenVINO model
ov_model = ov.convert_model(model)

# compile the model for CPU device
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')

# infer the model on random data
data = np.random.rand(1, 224, 224, 3)
output = compiled_model({0: data})
```

OpenVINO supports the CPU, GPU, and NPU [devices](https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html) and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax [frameworks](https://docs.openvino.ai/2025/openvino-workflow/model-preparation.html). It includes [APIs](https://docs.openvino.ai/2025/api/api_reference.html) in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.

## Generative AI with OpenVINO

Get started with the OpenVINO GenAI [installation](https://docs.openvino.ai/2025/get-started/install-openvino/install-openvino-genai.html) and refer to the [detailed guide](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) to explore the capabilities of Generative AI using OpenVINO.

Learn how to run LLMs and GenAI with [Samples](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples) in the [OpenVINO™ GenAI repo](https://github.com/openvinotoolkit/openvino.genai). See GenAI in action with Jupyter notebooks: [LLM-powered Chatbot](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot) and [LLM Instruction-following pipeline](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-question-answering).

## Documentation

[User documentation](https://docs.openvino.ai/) contains detailed information about OpenVINO and guides you from installation through optimizing and deploying models for your AI applications.

[Developer documentation](https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/index.md) focuses on the OpenVINO architecture and describes [building](https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/build.md)  and [contributing](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md) processes.

## OpenVINO Ecosystem

### OpenVINO Tools

-   [Neural Network Compression Framework (NNCF)](https://github.com/openvinotoolkit/nncf) - advanced model optimization techniques including quantization, filter pruning, binarization, and sparsity.
-   [GenAI Repository](https://github.com/openvinotoolkit/openvino.genai) and [OpenVINO Tokenizers](https://github.com/openvinotoolkit/openvino_tokenizers) - resources and tools for developing and optimizing Generative AI applications.
-   [OpenVINO™ Model Server (OVMS)](https://github.com/openvinotoolkit/model_server) - a scalable, high-performance solution for serving models optimized for Intel architectures.
-   [Intel® Geti™](https://geti.intel.com/) - an interactive video and image annotation tool for computer vision use cases.

### Integrations

-   [🤗Optimum Intel](https://github.com/huggingface/optimum-intel) - grab and use models leveraging OpenVINO within the Hugging Face API.
-   [Torch.compile](https://docs.openvino.ai/2025/openvino-workflow/torch-compile.html) - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.
-   [OpenVINO LLMs inference and serving with vLLM​](https://github.com/vllm-project/vllm-openvino) - enhance vLLM's fast and easy model serving with the OpenVINO backend.
-   [OpenVINO Execution Provider for ONNX Runtime](https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html) - use OpenVINO as a backend with your existing ONNX Runtime code.
-   [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openvino/) - build context-augmented GenAI applications with the LlamaIndex framework and enhance runtime performance with OpenVINO.
-   [LangChain](https://python.langchain.com/docs/integrations/llms/openvino/) - integrate OpenVINO with the LangChain framework to enhance runtime performance for GenAI applications.
-   [Keras 3](https://github.com/keras-team/keras) - Keras 3 is a multi-backend deep learning framework. Users can switch model inference to the OpenVINO backend using the Keras API.

Check out the [Awesome OpenVINO](https://github.com/openvinotoolkit/awesome-openvino) repository to discover a collection of community-made AI projects based on OpenVINO!

## Performance

Explore [OpenVINO Performance Benchmarks](https://docs.openvino.ai/2025/about-openvino/performance-benchmarks.html) to discover the optimal hardware configurations and plan your AI deployment based on verified data.

## Contribution and Support

Check out [Contribution Guidelines](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md) for more details.
Read the [Good First Issues section](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md#3-start-working-on-your-good-first-issue), if you're looking for a place to start contributing. We welcome contributions of all kinds!

You can ask questions and get support on:

* [GitHub Issues](https://github.com/openvinotoolkit/openvino/issues).
* OpenVINO channels on the [Intel DevHub Discord server](https://discord.gg/7pVRxUwdWG).
* The [`openvino`](https://stackoverflow.com/questions/tagged/openvino) tag on Stack Overflow\*.


## Resources

* [Release Notes](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino.html)
* [OpenVINO Blog](https://blog.openvino.ai/)
* [OpenVINO™ toolkit on Medium](https://medium.com/@openvino)


## Telemetry

OpenVINO™ collects software performance and usage data for the purpose of improving OpenVINO™ tools.
This data is collected directly by OpenVINO™ or through the use of Google Analytics 4.
You can opt-out at any time by running the command:

``` bash
opt_in_out --opt_out
```

More Information is available at [OpenVINO™ Telemetry](https://docs.openvino.ai/2025/about-openvino/additional-resources/telemetry.html).

## License

OpenVINO™ Toolkit is licensed under [Apache License Version 2.0](https://github.com/openvinotoolkit/openvino/blob/master/LICENSE).
By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.

---
\* Other names and brands may be claimed as the property of others.

            

Raw data

            {
    "_id": null,
    "home_page": "https://docs.openvino.ai/2023.0/index.html",
    "name": "openvino",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "OpenVINO Developers <openvino@intel.com>",
    "download_url": "https://github.com/openvinotoolkit/openvino/releases",
    "platform": null,
    "description": "<div align=\"center\">\n<img src=\"https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/assets/openvino-logo-purple-black.svg\" width=\"400px\">\n\n<h3 align=\"center\">\nOpen-source software toolkit for optimizing and deploying deep learning models.\n</h3>\n\n<p align=\"center\">\n <a href=\"https://docs.openvino.ai/2025/index.html\"><b>Documentation</b></a> \u2022 <a href=\"https://blog.openvino.ai\"><b>Blog</b></a> \u2022 <a href=\"https://docs.openvino.ai/2025/about-openvino/key-features.html\"><b>Key Features</b></a> \u2022 <a href=\"https://docs.openvino.ai/2025/get-started/learn-openvino.html\"><b>Tutorials</b></a> \u2022 <a href=\"https://docs.openvino.ai/2025/documentation/openvino-ecosystem.html\"><b>Integrations</b></a> \u2022 <a href=\"https://docs.openvino.ai/2025/about-openvino/performance-benchmarks.html\"><b>Benchmarks</b></a> \u2022 <a href=\"https://github.com/openvinotoolkit/openvino.genai\"><b>Generative AI</b></a>\n</p>\n\n[![PyPI Status](https://badge.fury.io/py/openvino.svg)](https://badge.fury.io/py/openvino)\n[![Anaconda Status](https://anaconda.org/conda-forge/openvino/badges/version.svg)](https://anaconda.org/conda-forge/openvino)\n[![brew Status](https://img.shields.io/homebrew/v/openvino)](https://formulae.brew.sh/formula/openvino)\n\n[![PyPI Downloads](https://static.pepy.tech/badge/openvino)](https://pepy.tech/project/openvino)\n[![Anaconda Downloads](https://anaconda.org/conda-forge/libopenvino/badges/downloads.svg)](https://anaconda.org/conda-forge/openvino/files)\n[![brew Downloads](https://img.shields.io/homebrew/installs/dy/openvino)](https://formulae.brew.sh/formula/openvino)\n </div>\n\n\n- **Inference Optimization**: Boost deep learning performance in computer vision, automatic speech recognition, generative AI, natural language processing with large and small language models, and many other common tasks.\n- **Flexible Model Support**: Use models trained with popular frameworks such as PyTorch, TensorFlow, ONNX, Keras, PaddlePaddle, and JAX/Flax. Directly integrate models built with transformers and diffusers from the Hugging Face Hub using Optimum Intel. Convert and deploy models without original frameworks.\n- **Broad Platform Compatibility**: Reduce resource demands and efficiently deploy on a range of platforms from edge to cloud. OpenVINO\u2122 supports inference on CPU (x86, ARM), GPU (Intel integrated & discrete GPU) and AI accelerators (Intel NPU).\n- **Community and Ecosystem**: Join an active community contributing to the enhancement of deep learning performance across various domains.\n\nCheck out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2025/_static/download/OpenVINO_Quick_Start_Guide.pdf) and [Key Features](https://docs.openvino.ai/2025/about-openvino/key-features.html) for a quick reference.\n\n\n## Installation\n\n[Get your preferred distribution of OpenVINO](https://docs.openvino.ai/2025/get-started/install-openvino.html) or use this command for quick installation:\n\n```sh\npip install -U openvino\n```\n\nCheck [system requirements](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino/system-requirements.html) and [supported devices](https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html) for detailed information.\n\n## Tutorials and Examples\n\n[OpenVINO Quickstart example](https://docs.openvino.ai/2025/get-started.html) will walk you through the basics of deploying your first model.\n\nLearn how to optimize and deploy popular models with the [OpenVINO Notebooks](https://github.com/openvinotoolkit/openvino_notebooks)\ud83d\udcda:\n- [Create an LLM-powered Chatbot using OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/llm-chatbot-generate-api.ipynb)\n- [YOLOv11 Optimization](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/yolov11-optimization/yolov11-object-detection.ipynb)\n- [Text-to-Image Generation](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/text-to-image-genai/text-to-image-genai.ipynb)\n- [Multimodal assistant with LLaVa and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llava-multimodal-chatbot/llava-multimodal-chatbot-genai.ipynb)\n- [Automatic speech recognition using Whisper and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/whisper-asr-genai/whisper-asr-genai.ipynb)\n\nDiscover more examples in the [OpenVINO Samples (Python & C++)](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples.html) and [Notebooks (Python)](https://docs.openvino.ai/2025/get-started/learn-openvino/interactive-tutorials-python.html).\n\nHere are easy-to-follow code examples demonstrating how to run PyTorch and TensorFlow model inference using OpenVINO:\n\n**PyTorch Model**\n\n```python\nimport openvino as ov\nimport torch\nimport torchvision\n\n# load PyTorch model into memory\nmodel = torch.hub.load(\"pytorch/vision\", \"shufflenet_v2_x1_0\", weights=\"DEFAULT\")\n\n# convert the model into OpenVINO model\nexample = torch.randn(1, 3, 224, 224)\nov_model = ov.convert_model(model, example_input=(example,))\n\n# compile the model for CPU device\ncore = ov.Core()\ncompiled_model = core.compile_model(ov_model, 'CPU')\n\n# infer the model on random data\noutput = compiled_model({0: example.numpy()})\n```\n\n**TensorFlow Model**\n\n```python\nimport numpy as np\nimport openvino as ov\nimport tensorflow as tf\n\n# load TensorFlow model into memory\nmodel = tf.keras.applications.MobileNetV2(weights='imagenet')\n\n# convert the model into OpenVINO model\nov_model = ov.convert_model(model)\n\n# compile the model for CPU device\ncore = ov.Core()\ncompiled_model = core.compile_model(ov_model, 'CPU')\n\n# infer the model on random data\ndata = np.random.rand(1, 224, 224, 3)\noutput = compiled_model({0: data})\n```\n\nOpenVINO supports the CPU, GPU, and NPU [devices](https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html) and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax [frameworks](https://docs.openvino.ai/2025/openvino-workflow/model-preparation.html). It includes [APIs](https://docs.openvino.ai/2025/api/api_reference.html) in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.\n\n## Generative AI with OpenVINO\n\nGet started with the OpenVINO GenAI [installation](https://docs.openvino.ai/2025/get-started/install-openvino/install-openvino-genai.html) and refer to the [detailed guide](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) to explore the capabilities of Generative AI using OpenVINO.\n\nLearn how to run LLMs and GenAI with [Samples](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples) in the [OpenVINO\u2122 GenAI repo](https://github.com/openvinotoolkit/openvino.genai). See GenAI in action with Jupyter notebooks: [LLM-powered Chatbot](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot) and [LLM Instruction-following pipeline](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-question-answering).\n\n## Documentation\n\n[User documentation](https://docs.openvino.ai/) contains detailed information about OpenVINO and guides you from installation through optimizing and deploying models for your AI applications.\n\n[Developer documentation](https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/index.md) focuses on the OpenVINO architecture and describes [building](https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/build.md)  and [contributing](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md) processes.\n\n## OpenVINO Ecosystem\n\n### OpenVINO Tools\n\n-   [Neural Network Compression Framework (NNCF)](https://github.com/openvinotoolkit/nncf) - advanced model optimization techniques including quantization, filter pruning, binarization, and sparsity.\n-   [GenAI Repository](https://github.com/openvinotoolkit/openvino.genai) and [OpenVINO Tokenizers](https://github.com/openvinotoolkit/openvino_tokenizers) - resources and tools for developing and optimizing Generative AI applications.\n-   [OpenVINO\u2122 Model Server (OVMS)](https://github.com/openvinotoolkit/model_server) - a scalable, high-performance solution for serving models optimized for Intel architectures.\n-   [Intel\u00ae Geti\u2122](https://geti.intel.com/) - an interactive video and image annotation tool for computer vision use cases.\n\n### Integrations\n\n-   [\ud83e\udd17Optimum Intel](https://github.com/huggingface/optimum-intel) - grab and use models leveraging OpenVINO within the Hugging Face API.\n-   [Torch.compile](https://docs.openvino.ai/2025/openvino-workflow/torch-compile.html) - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.\n-   [OpenVINO LLMs inference and serving with vLLM\u200b](https://github.com/vllm-project/vllm-openvino) - enhance vLLM's fast and easy model serving with the OpenVINO backend.\n-   [OpenVINO Execution Provider for ONNX Runtime](https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html) - use OpenVINO as a backend with your existing ONNX Runtime code.\n-   [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openvino/) - build context-augmented GenAI applications with the LlamaIndex framework and enhance runtime performance with OpenVINO.\n-   [LangChain](https://python.langchain.com/docs/integrations/llms/openvino/) - integrate OpenVINO with the LangChain framework to enhance runtime performance for GenAI applications.\n-   [Keras 3](https://github.com/keras-team/keras) - Keras 3 is a multi-backend deep learning framework. Users can switch model inference to the OpenVINO backend using the Keras API.\n\nCheck out the [Awesome OpenVINO](https://github.com/openvinotoolkit/awesome-openvino) repository to discover a collection of community-made AI projects based on OpenVINO!\n\n## Performance\n\nExplore [OpenVINO Performance Benchmarks](https://docs.openvino.ai/2025/about-openvino/performance-benchmarks.html) to discover the optimal hardware configurations and plan your AI deployment based on verified data.\n\n## Contribution and Support\n\nCheck out [Contribution Guidelines](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md) for more details.\nRead the [Good First Issues section](https://github.com/openvinotoolkit/openvino/blob/master/CONTRIBUTING.md#3-start-working-on-your-good-first-issue), if you're looking for a place to start contributing. We welcome contributions of all kinds!\n\nYou can ask questions and get support on:\n\n* [GitHub Issues](https://github.com/openvinotoolkit/openvino/issues).\n* OpenVINO channels on the [Intel DevHub Discord server](https://discord.gg/7pVRxUwdWG).\n* The [`openvino`](https://stackoverflow.com/questions/tagged/openvino) tag on Stack Overflow\\*.\n\n\n## Resources\n\n* [Release Notes](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino.html)\n* [OpenVINO Blog](https://blog.openvino.ai/)\n* [OpenVINO\u2122 toolkit on Medium](https://medium.com/@openvino)\n\n\n## Telemetry\n\nOpenVINO\u2122 collects software performance and usage data for the purpose of improving OpenVINO\u2122 tools.\nThis data is collected directly by OpenVINO\u2122 or through the use of Google Analytics 4.\nYou can opt-out at any time by running the command:\n\n``` bash\nopt_in_out --opt_out\n```\n\nMore Information is available at [OpenVINO\u2122 Telemetry](https://docs.openvino.ai/2025/about-openvino/additional-resources/telemetry.html).\n\n## License\n\nOpenVINO\u2122 Toolkit is licensed under [Apache License Version 2.0](https://github.com/openvinotoolkit/openvino/blob/master/LICENSE).\nBy contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.\n\n---\n\\* Other names and brands may be claimed as the property of others.\n",
    "bugtrack_url": null,
    "license": "OSI Approved :: Apache Software License",
    "summary": "OpenVINO(TM) Runtime",
    "version": "2025.3.0",
    "project_urls": {
        "Download": "https://github.com/openvinotoolkit/openvino/releases",
        "Homepage": "https://docs.openvino.ai/2023.0/index.html"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "34620269c7bb3e8a4044216a48de8c033455c654b92fbc35ebe302aeb2e1ee5d",
                "md5": "6b67d0f0ebb779d88e95bac138a90bc9",
                "sha256": "65e46f3a31f4789870612444417735c7fd3a27c99927a7bbcba2dd55ca87adb9"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp310-cp310-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6b67d0f0ebb779d88e95bac138a90bc9",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 39454260,
            "upload_time": "2025-09-03T09:26:22",
            "upload_time_iso_8601": "2025-09-03T09:26:22.777352Z",
            "url": "https://files.pythonhosted.org/packages/34/62/0269c7bb3e8a4044216a48de8c033455c654b92fbc35ebe302aeb2e1ee5d/openvino-2025.3.0-19807-cp310-cp310-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "95ea4cbf8b995ab4fa96e77504a53ad68102a117b36d534d62fe131f47c769b2",
                "md5": "f5aafd1ac7e0e91999f2a269b0d99b75",
                "sha256": "6797b5d753dba7639b6fdbf677cac0a6929daeeb4073f4e7fe125ad7fcf8d071"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp310-cp310-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "f5aafd1ac7e0e91999f2a269b0d99b75",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 32078880,
            "upload_time": "2025-09-03T09:26:25",
            "upload_time_iso_8601": "2025-09-03T09:26:25.942129Z",
            "url": "https://files.pythonhosted.org/packages/95/ea/4cbf8b995ab4fa96e77504a53ad68102a117b36d534d62fe131f47c769b2/openvino-2025.3.0-19807-cp310-cp310-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e79ef256b1aa0b9b6d278c70222397e6d974763bb4f16d31096327d705cb8bbf",
                "md5": "a7e7f18aaaf4212ba3d040bd7d3c841a",
                "sha256": "e61ae576aa2c0f766e9b9cee7081026474191f2a145c9a666a9931a82ffe31a4"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a7e7f18aaaf4212ba3d040bd7d3c841a",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 48965362,
            "upload_time": "2025-09-03T09:26:29",
            "upload_time_iso_8601": "2025-09-03T09:26:29.747927Z",
            "url": "https://files.pythonhosted.org/packages/e7/9e/f256b1aa0b9b6d278c70222397e6d974763bb4f16d31096327d705cb8bbf/openvino-2025.3.0-19807-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "92461f86133b078f44d3c6647a74aaedc028e08e793ab30b948b56edd680a208",
                "md5": "ad117171a6fc29f669c8f90163035574",
                "sha256": "f85775c5eb404523e0371fa33d305d88e9ed15ecdab77c1e209abe54e981ac38"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp310-cp310-manylinux_2_35_aarch64.whl",
            "has_sig": false,
            "md5_digest": "ad117171a6fc29f669c8f90163035574",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 27702047,
            "upload_time": "2025-09-03T09:26:32",
            "upload_time_iso_8601": "2025-09-03T09:26:32.331217Z",
            "url": "https://files.pythonhosted.org/packages/92/46/1f86133b078f44d3c6647a74aaedc028e08e793ab30b948b56edd680a208/openvino-2025.3.0-19807-cp310-cp310-manylinux_2_35_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ed912209e0186863a2d2250f520a29c3a006fc873d4e65ecbce8dfa3710d4a7d",
                "md5": "8008a3eac146bebe28f443ffc6acc3b2",
                "sha256": "ec1c369503565b4c4f004152210631a407c92b0b01003dae8f5e887858c8f15c"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "8008a3eac146bebe28f443ffc6acc3b2",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 40630779,
            "upload_time": "2025-09-03T09:26:35",
            "upload_time_iso_8601": "2025-09-03T09:26:35.430677Z",
            "url": "https://files.pythonhosted.org/packages/ed/91/2209e0186863a2d2250f520a29c3a006fc873d4e65ecbce8dfa3710d4a7d/openvino-2025.3.0-19807-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "71229eb091756e063cb395205a77c44133a87f3957b0c4389b8497a7ba59fcb9",
                "md5": "6a2858b2ef161a138016ef414bcba1b6",
                "sha256": "515e1f3e148e348422ff0c8eec1a2570c775b0d704b9af66429e0b8397d0a09f"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp311-cp311-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6a2858b2ef161a138016ef414bcba1b6",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 39462758,
            "upload_time": "2025-09-03T09:26:38",
            "upload_time_iso_8601": "2025-09-03T09:26:38.236453Z",
            "url": "https://files.pythonhosted.org/packages/71/22/9eb091756e063cb395205a77c44133a87f3957b0c4389b8497a7ba59fcb9/openvino-2025.3.0-19807-cp311-cp311-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e5cdc00cfd6404a78ebba867c90ec7e043e585ee96a63beb0a609683ead2f86e",
                "md5": "4c86b0c132d8ead162c5030070edf3d3",
                "sha256": "91d5ac169e398d1f03bfd39f8d063d63a5226b01df3cc8218772d947badbbc60"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp311-cp311-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "4c86b0c132d8ead162c5030070edf3d3",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 32086602,
            "upload_time": "2025-09-03T09:26:41",
            "upload_time_iso_8601": "2025-09-03T09:26:41.426186Z",
            "url": "https://files.pythonhosted.org/packages/e5/cd/c00cfd6404a78ebba867c90ec7e043e585ee96a63beb0a609683ead2f86e/openvino-2025.3.0-19807-cp311-cp311-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c6cecd768e7f2bc21ef93c367b3a850768239a43aa7bd0f2e1e34fd4ab1e3a7d",
                "md5": "c4c93f43845c931ee4333143126a6233",
                "sha256": "fcc9e4e8116845359a15dfd721bb863a207325bd267770919cc0fb72e6036764"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "c4c93f43845c931ee4333143126a6233",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 48974582,
            "upload_time": "2025-09-03T09:26:44",
            "upload_time_iso_8601": "2025-09-03T09:26:44.468142Z",
            "url": "https://files.pythonhosted.org/packages/c6/ce/cd768e7f2bc21ef93c367b3a850768239a43aa7bd0f2e1e34fd4ab1e3a7d/openvino-2025.3.0-19807-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c60de867ca8dce7195488dce66bd432e0172d81128343fd931e3941d4d9b2ac0",
                "md5": "3ae07da7052512ac463b7e5f2161b48d",
                "sha256": "efa2a2b3800f3343070a43ef47d21e8257d4b060f36ef3edef85f97d7bcdd29b"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp311-cp311-manylinux_2_35_aarch64.whl",
            "has_sig": false,
            "md5_digest": "3ae07da7052512ac463b7e5f2161b48d",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 27709483,
            "upload_time": "2025-09-03T09:26:47",
            "upload_time_iso_8601": "2025-09-03T09:26:47.235645Z",
            "url": "https://files.pythonhosted.org/packages/c6/0d/e867ca8dce7195488dce66bd432e0172d81128343fd931e3941d4d9b2ac0/openvino-2025.3.0-19807-cp311-cp311-manylinux_2_35_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7af24e59a29c7687e99c831ce190e7d54603e1ed2bdcfbdd00792d8bba829d74",
                "md5": "352d51b02e2d13ca84f58861e91d6223",
                "sha256": "11c57fd340d957948b66cb91e1694f79b744fd754800bd1f7e0543d926b0a015"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "352d51b02e2d13ca84f58861e91d6223",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 40637044,
            "upload_time": "2025-09-03T09:26:49",
            "upload_time_iso_8601": "2025-09-03T09:26:49.664025Z",
            "url": "https://files.pythonhosted.org/packages/7a/f2/4e59a29c7687e99c831ce190e7d54603e1ed2bdcfbdd00792d8bba829d74/openvino-2025.3.0-19807-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dcf80bca9783eda61d445b3c4bc1a141ecdbfa864d96d34fdf07aacd103609d7",
                "md5": "9a90c5abf1f3f5c0825831c9c9488c42",
                "sha256": "3e9ebe81b17b8d92290191551c25c74da07358bd4c6e25058f6f906596f062ef"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp312-cp312-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "9a90c5abf1f3f5c0825831c9c9488c42",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 39529889,
            "upload_time": "2025-09-03T09:26:53",
            "upload_time_iso_8601": "2025-09-03T09:26:53.341346Z",
            "url": "https://files.pythonhosted.org/packages/dc/f8/0bca9783eda61d445b3c4bc1a141ecdbfa864d96d34fdf07aacd103609d7/openvino-2025.3.0-19807-cp312-cp312-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "739aec0bfe714996da93cb31fe5cc76b864f86a727935a275f68df697b716b59",
                "md5": "4ed1217c92ea34625623dc2f92a18cac",
                "sha256": "c324e0bb47b2a29ea3340454dddd3032afcb2794ab1b68a858bd693892ea21e4"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp312-cp312-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "4ed1217c92ea34625623dc2f92a18cac",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 32120253,
            "upload_time": "2025-09-03T09:26:55",
            "upload_time_iso_8601": "2025-09-03T09:26:55.752677Z",
            "url": "https://files.pythonhosted.org/packages/73/9a/ec0bfe714996da93cb31fe5cc76b864f86a727935a275f68df697b716b59/openvino-2025.3.0-19807-cp312-cp312-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f4e31e2588b2bc85b7437f8c38dda0b04df47d4234599e4efaf55574d7b49575",
                "md5": "cdfebd8325286a93c5a7a37ffef936a9",
                "sha256": "3b5523b739650b7df29d68c59c58a928e454181d637c0c9c71087c6dbfd0e071"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cdfebd8325286a93c5a7a37ffef936a9",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 48981144,
            "upload_time": "2025-09-03T09:26:58",
            "upload_time_iso_8601": "2025-09-03T09:26:58.618796Z",
            "url": "https://files.pythonhosted.org/packages/f4/e3/1e2588b2bc85b7437f8c38dda0b04df47d4234599e4efaf55574d7b49575/openvino-2025.3.0-19807-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3f9696e9a2f30562c66866b2b6f5b4ebbb6e3146148a2feb064b128d77f885c6",
                "md5": "a51aa9417787163aaa656b5a2751d890",
                "sha256": "3895d7873d06e95066c7a09dd09eb23dc5553359c66fe63c11c43938ed08df37"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp312-cp312-manylinux_2_35_aarch64.whl",
            "has_sig": false,
            "md5_digest": "a51aa9417787163aaa656b5a2751d890",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 27707240,
            "upload_time": "2025-09-03T09:27:01",
            "upload_time_iso_8601": "2025-09-03T09:27:01.041787Z",
            "url": "https://files.pythonhosted.org/packages/3f/96/96e9a2f30562c66866b2b6f5b4ebbb6e3146148a2feb064b128d77f885c6/openvino-2025.3.0-19807-cp312-cp312-manylinux_2_35_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dafc20bfe74f30576af264d6166005bbcf4426c7e375c4e5cd160402e7ffb6f0",
                "md5": "ea3babd14053c4f01049de71a6e69cc9",
                "sha256": "e2ee0d79a6bb50bcdaf111640935a21802dc38f3285ea1e25ff353bb99f70f5a"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "ea3babd14053c4f01049de71a6e69cc9",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 40629330,
            "upload_time": "2025-09-03T09:27:03",
            "upload_time_iso_8601": "2025-09-03T09:27:03.547815Z",
            "url": "https://files.pythonhosted.org/packages/da/fc/20bfe74f30576af264d6166005bbcf4426c7e375c4e5cd160402e7ffb6f0/openvino-2025.3.0-19807-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0927bc0844b3478e1325eb83e2a823e888b3a73e1d7a0747fa42e5f1c9e8eddd",
                "md5": "2ffa79e8a2abb72059cee5c947c97a6a",
                "sha256": "d5e0ae44e84fecdbe44543eb07662f3bb9a8f7e70e80d9fba5b3387fe6a82698"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp313-cp313-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "2ffa79e8a2abb72059cee5c947c97a6a",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 39530514,
            "upload_time": "2025-09-03T09:27:06",
            "upload_time_iso_8601": "2025-09-03T09:27:06.113971Z",
            "url": "https://files.pythonhosted.org/packages/09/27/bc0844b3478e1325eb83e2a823e888b3a73e1d7a0747fa42e5f1c9e8eddd/openvino-2025.3.0-19807-cp313-cp313-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1ebca5e7d87c3f667e379b898e9b8c5fbfd7f650d0208e265c808540747aed71",
                "md5": "da49082246742b2ec2e586c79742e6ce",
                "sha256": "e0a0d22e2bcde936e2f7500cd9ea2240eb00ba440e896cacdfcf535941ad3859"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp313-cp313-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "da49082246742b2ec2e586c79742e6ce",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 32120370,
            "upload_time": "2025-09-03T09:27:10",
            "upload_time_iso_8601": "2025-09-03T09:27:10.095642Z",
            "url": "https://files.pythonhosted.org/packages/1e/bc/a5e7d87c3f667e379b898e9b8c5fbfd7f650d0208e265c808540747aed71/openvino-2025.3.0-19807-cp313-cp313-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "844ef05f3c05af28b5d3af2410ce210aa1719d22ab379be73ba173ffb9811289",
                "md5": "4b70e56d817ddcbddead42b40c35aaf6",
                "sha256": "e79b7280d13350dc83f83e86799d5eef71f09338f7f5b9f26a1530e67f8ea765"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp313-cp313-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4b70e56d817ddcbddead42b40c35aaf6",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 48984273,
            "upload_time": "2025-09-03T09:27:13",
            "upload_time_iso_8601": "2025-09-03T09:27:13.261934Z",
            "url": "https://files.pythonhosted.org/packages/84/4e/f05f3c05af28b5d3af2410ce210aa1719d22ab379be73ba173ffb9811289/openvino-2025.3.0-19807-cp313-cp313-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4a8f79f4412e705ec6561be1effc0c07821839674a7b06bba45147a01de01758",
                "md5": "b5cfd9aee7cbde4bfe0da42b8bc9e222",
                "sha256": "c156c5482bf013d1105bff6781f23c26480d5bf4a5d39e1e14970f170b6ed09e"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp313-cp313-manylinux_2_35_aarch64.whl",
            "has_sig": false,
            "md5_digest": "b5cfd9aee7cbde4bfe0da42b8bc9e222",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 27709658,
            "upload_time": "2025-09-03T09:27:15",
            "upload_time_iso_8601": "2025-09-03T09:27:15.632439Z",
            "url": "https://files.pythonhosted.org/packages/4a/8f/79f4412e705ec6561be1effc0c07821839674a7b06bba45147a01de01758/openvino-2025.3.0-19807-cp313-cp313-manylinux_2_35_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3365e0de33399494630f78fcb72f58f9f6fd7f9b33a65a6e12eb5fd5074730de",
                "md5": "a3c9d3a9ec89210489d5e64b5f685fcc",
                "sha256": "54da8bf271b4d4c38425e6a3935ce82911391b0515e3439864b0f15a28080fe9"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp313-cp313-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "a3c9d3a9ec89210489d5e64b5f685fcc",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 40629458,
            "upload_time": "2025-09-03T09:27:18",
            "upload_time_iso_8601": "2025-09-03T09:27:18.129314Z",
            "url": "https://files.pythonhosted.org/packages/33/65/e0de33399494630f78fcb72f58f9f6fd7f9b33a65a6e12eb5fd5074730de/openvino-2025.3.0-19807-cp313-cp313-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3e74222d9d1ac9236d217d87e35741e4c3f93df4a15011ff0d39a9017180de52",
                "md5": "8467f879b26d41bb16963952c7b9669f",
                "sha256": "8d45c98ef22e90c3886c0209b9a6d849956c5af2cd3ffed4ac0539ab467838b3"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp39-cp39-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "8467f879b26d41bb16963952c7b9669f",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 39455349,
            "upload_time": "2025-09-03T09:27:20",
            "upload_time_iso_8601": "2025-09-03T09:27:20.774221Z",
            "url": "https://files.pythonhosted.org/packages/3e/74/222d9d1ac9236d217d87e35741e4c3f93df4a15011ff0d39a9017180de52/openvino-2025.3.0-19807-cp39-cp39-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9d9ec503dce243e276ed5ac9f16497808fb62e64ef637b64e71546f4669dd8e8",
                "md5": "637314adc4e28995e96b48ad07d14647",
                "sha256": "a951050563ed90dda476bb81119af432b702a926dee59c9f82921413a73b86ca"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp39-cp39-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "637314adc4e28995e96b48ad07d14647",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 32080155,
            "upload_time": "2025-09-03T09:27:23",
            "upload_time_iso_8601": "2025-09-03T09:27:23.784625Z",
            "url": "https://files.pythonhosted.org/packages/9d/9e/c503dce243e276ed5ac9f16497808fb62e64ef637b64e71546f4669dd8e8/openvino-2025.3.0-19807-cp39-cp39-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2470a32a316ce500392fa64703a81d472e054080b54c08805302109159b070b5",
                "md5": "06ac7a8cfbd1007a2302ebd245eeff0c",
                "sha256": "06d9cb61f600308e0b476ac3cbe818b86befd284d205997ca7ac6cf454e1492d"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "06ac7a8cfbd1007a2302ebd245eeff0c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 48967245,
            "upload_time": "2025-09-03T09:27:26",
            "upload_time_iso_8601": "2025-09-03T09:27:26.421048Z",
            "url": "https://files.pythonhosted.org/packages/24/70/a32a316ce500392fa64703a81d472e054080b54c08805302109159b070b5/openvino-2025.3.0-19807-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1f51f1d9133f385d08e5deaa0bed67eca265ded74c4f03e076dc83d04cae7c81",
                "md5": "ee9584238b6c386c6ae3f7d405967455",
                "sha256": "99dfc87425b4a8d5e321680eb6381a69b5b043bcd2eff3d6d39c8e661fc9c851"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp39-cp39-manylinux_2_35_aarch64.whl",
            "has_sig": false,
            "md5_digest": "ee9584238b6c386c6ae3f7d405967455",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 27707013,
            "upload_time": "2025-09-03T09:27:29",
            "upload_time_iso_8601": "2025-09-03T09:27:29.391287Z",
            "url": "https://files.pythonhosted.org/packages/1f/51/f1d9133f385d08e5deaa0bed67eca265ded74c4f03e076dc83d04cae7c81/openvino-2025.3.0-19807-cp39-cp39-manylinux_2_35_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "93549118eb65b6fade044cba9cb3708d1f6df6fd88f9d1e42d3a9a9d1dd78135",
                "md5": "edc45ed4165e6f6e9061bb2e7eb7c973",
                "sha256": "ae32cdcd8d2b6e263fa0368edecfb2035ba85d140b9f58914945c121a5a651d0"
            },
            "downloads": -1,
            "filename": "openvino-2025.3.0-19807-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "edc45ed4165e6f6e9061bb2e7eb7c973",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 40631464,
            "upload_time": "2025-09-03T09:27:31",
            "upload_time_iso_8601": "2025-09-03T09:27:31.932325Z",
            "url": "https://files.pythonhosted.org/packages/93/54/9118eb65b6fade044cba9cb3708d1f6df6fd88f9d1e42d3a9a9d1dd78135/openvino-2025.3.0-19807-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 09:26:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openvinotoolkit",
    "github_project": "openvino",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "openvino"
}
        
Elapsed time: 1.46867s