<h1 align="center" style="border-bottom: none">
<div>
<a href="https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=header_img&utm_campaign=opik"><picture>
<source media="(prefers-color-scheme: dark)" srcset="/apps/opik-documentation/documentation/static/img/logo-dark-mode.svg">
<source media="(prefers-color-scheme: light)" srcset="/apps/opik-documentation/documentation/static/img/opik-logo.svg">
<img alt="Comet Opik logo" src="/apps/opik-documentation/documentation/static/img/opik-logo.svg" width="200" />
</picture></a>
<br>
Opik
</div>
Open source LLM evaluation framework<br>
</h1>
<p align="center">
From RAG chatbots to code assistants to complex agentic pipelines and beyond, build LLM systems that run better, faster, and cheaper with tracing, evaluations, and dashboards.
</p>
<div align="center">
[![Python SDK](https://img.shields.io/pypi/v/opik)](https://pypi.org/project/opik/)
[![License](https://img.shields.io/github/license/comet-ml/opik)](https://github.com/comet-ml/opik/blob/main/LICENSE)
[![Build](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml/badge.svg)](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml)
<a target="_blank" href="https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/opik_quickstart.ipynb">
<!-- <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Quickstart In Colab"/> -->
</a>
</div>
<p align="center">
<a href="https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=website_button&utm_campaign=opik"><b>Website</b></a> •
<a href="https://chat.comet.com"><b>Slack community</b></a> •
<a href="https://x.com/Cometml"><b>Twitter</b></a> •
<a href="https://www.comet.com/docs/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=docs_button&utm_campaign=opik"><b>Documentation</b></a>
</p>
![Opik thumbnail](readme-thumbnail.png)
## 🚀 What is Opik?
Opik is an open-source platform for evaluating, testing and monitoring LLM applications. Built by [Comet](https://www.comet.com?from=llm&utm_source=opik&utm_medium=github&utm_content=what_is_opik_link&utm_campaign=opik).
<br>
You can use Opik for:
* **Development:**
* **Tracing:** Track all LLM calls and traces during development and production ([Quickstart](https://www.comet.com/docs/opik/quickstart/?from=llm&utm_source=opik&utm_medium=github&utm_content=quickstart_link&utm_campaign=opik), [Integrations](https://www.comet.com/docs/opik/tracing/integrations/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=integrations_link&utm_campaign=opik)
* **Annotations:** Annotate your LLM calls by logging feedback scores using the [Python SDK](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-and-spans-using-the-sdk?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link&utm_campaign=opik) or the [UI](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-through-the-ui?from=llm&utm_source=opik&utm_medium=github&utm_content=ui_link&utm_campaign=opik).
* **Playground:**: Try out different prompts and models in the [prompt playground](https://www.comet.com/docs/opik/evaluation/playground/?from=llm&utm_source=opik&utm_medium=github&utm_content=playground_link&utm_campaign=opik)
* **Evaluation**: Automate the evaluation process of your LLM application:
* **Datasets and Experiments**: Store test cases and run experiments ([Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_link&utm_campaign=opik), [Evaluate your LLM Application](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=eval_link&utm_campaign=opik))
* **LLM as a judge metrics**: Use Opik's LLM as a judge metric for complex issues like [hallucination detection](https://www.comet.com/docs/opik/evaluation/metrics/hallucination/?from=llm&utm_source=opik&utm_medium=github&utm_content=hallucination_link&utm_campaign=opik), [moderation](https://www.comet.com/docs/opik/evaluation/metrics/moderation/?from=llm&utm_source=opik&utm_medium=github&utm_content=moderation_link&utm_campaign=opik) and RAG evaluation ([Answer Relevance](https://www.comet.com/docs/opik/evaluation/metrics/answer_relevance/?from=llm&utm_source=opik&utm_medium=github&utm_content=alex_link&utm_campaign=opik), [Context Precision](https://www.comet.com/docs/opik/evaluation/metrics/context_precision/?from=llm&utm_source=opik&utm_medium=github&utm_content=context_link&utm_campaign=opik)
* **CI/CD integration**: Run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_link&utm_campaign=opik)
* **Production Monitoring**:
* **Log all your production traces**: Opik has been designed to support high volumes of traces, making it easy to monitor your production applications.
* **Monitoring dashboards**: Review your feedback scores, trace count and tokens over time in the [Opik Dashboard](https://www.comet.com/docs/opik/self-host/opik_dashboard/?from=llm&utm_source=opik&utm_medium=github&utm_content=dashboard_link&utm_campaign=opik).
> [!TIP]
> If you are looking for features that Opik doesn't have today, please raise a new [Feature request](https://github.com/comet-ml/opik/issues/new/choose) 🚀
<br>
## 🛠️ Installation
Opik is available as a fully open source local installation or using Comet.com as a hosted solution.
The easiest way to get started with Opik is by creating a free Comet account at [comet.com](https://www.comet.com/signup?from=llm&utm_source=opik&utm_medium=github&utm_content=install&utm_campaign=opik).
If you'd like to self-host Opik, you can do so by cloning the repository and starting the platform using Docker Compose:
```bash
# Clone the Opik repository
git clone https://github.com/comet-ml/opik.git
# Navigate to the opik/deployment/docker-compose directory
cd opik/deployment/docker-compose
# Start the Opik platform
docker compose up --detach
# You can now visit http://localhost:5173 on your browser!
```
For more information about the different deployment options, please see our deployment guides:
| Installation methods | Docs link |
| ------------------- | --------- |
| Local instance | [![Local Deployment](https://img.shields.io/badge/Local%20Deployments-%232496ED?style=flat&logo=docker&logoColor=white)](https://www.comet.com/docs/opik/self-host/local_deployment?from=llm&utm_source=opik&utm_medium=github&utm_content=self_host_link&utm_campaign=opik)
| Kubernetes | [![Kubernetes](https://img.shields.io/badge/Kubernetes-%23326ce5.svg?&logo=kubernetes&logoColor=white)](https://www.comet.com/docs/opik/self-host/kubernetes/#kubernetes-installation?from=llm&utm_source=opik&utm_medium=github&utm_content=kubernetes_link&utm_campaign=opik)
## 🏁 Get Started
To get started, you will need to first install the Python SDK:
```bash
pip install opik
```
Once the SDK is installed, you can configure it by running the `opik configure` command:
```bash
opik configure
```
This will allow you to configure Opik locally by setting the correct local server address or if you're using the Cloud platform by setting the API Key
> [!TIP]
> You can also call the `opik.configure(use_local=True)` method from your Python code to configure the SDK to run on the local installation.
You are now ready to start logging traces using the [Python SDK](https://www.comet.com/docs/opik/python-sdk-reference/?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link2&utm_campaign=opik).
### 📝 Logging Traces
The easiest way to get started is to use one of our integrations. Opik supports:
| Integration | Description | Documentation | Try in Colab |
| ----------- | ---------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| OpenAI | Log traces for all OpenAI LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/openai/?utm_source=opik&utm_medium=github&utm_content=openai_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/openai.ipynb) |
| LiteLLM | Call any LLM model using the OpenAI format | [Documentation](/tracing/integrations/litellm.md) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/litellm.ipynb) |
| LangChain | Log traces for all LangChain LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langchain/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langchain.ipynb) |
| Haystack | Log traces for all Haystack calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/haystack/?utm_source=opik&utm_medium=github&utm_content=haystack_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/haystack.ipynb) |
| Bedrock | Log traces for all Bedrock LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/bedrock?utm_source=opik&utm_medium=github&utm_content=bedrock_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/bedrock.ipynb) |
| Anthropic | Log traces for all Anthropic LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/anthropic?utm_source=opik&utm_medium=github&utm_content=anthropic_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/anthropic.ipynb) |
| Gemini | Log traces for all Gemini LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/gemini?utm_source=opik&utm_medium=github&utm_content=gemini_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/gemini.ipynb) |
| Groq | Log traces for all Groq LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/groq?utm_source=opik&utm_medium=github&utm_content=groq_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/groq.ipynb) |
| LangGraph | Log traces for all LangGraph executions | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langgraph/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langgraph.ipynb) |
| LlamaIndex | Log traces for all LlamaIndex LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/llama_index?utm_source=opik&utm_medium=github&utm_content=llama_index_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/llama-index.ipynb) |
| Ollama | Log traces for all Ollama LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ollama?utm_source=opik&utm_medium=github&utm_content=ollama_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ollama.ipynb) |
| Predibase | Fine-tune and serve open-source Large Language Models | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/predibase?utm_source=opik&utm_medium=github&utm_content=predibase_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/predibase.ipynb) |
| Ragas | Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ragas?utm_source=opik&utm_medium=github&utm_content=ragas_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ragas.ipynb) |
| watsonx | Log traces for all watsonx LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/watsonx?utm_source=opik&utm_medium=github&utm_content=watsonx_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/watsonx.ipynb) |
> [!TIP]
> If the framework you are using is not listed above, feel free to [open an issue](https://github.com/comet-ml/opik/issues) or submit a PR with the integration.
If you are not using any of the frameworks above, you can also use the `track` function decorator to [log traces](https://www.comet.com/docs/opik/tracing/log_traces/?from=llm&utm_source=opik&utm_medium=github&utm_content=traces_link&utm_campaign=opik):
```python
import opik
opik.configure(use_local=True) # Run locally
@opik.track
def my_llm_function(user_question: str) -> str:
# Your LLM code here
return "Hello"
```
> [!TIP]
> The track decorator can be used in conjunction with any of our integrations and can also be used to track nested function calls.
### 🧑⚖️ LLM as a Judge metrics
The Python Opik SDK includes a number of LLM as a judge metrics to help you evaluate your LLM application. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_2_link&utm_campaign=opik).
To use them, simply import the relevant metric and use the `score` function:
```python
from opik.evaluation.metrics import Hallucination
metric = Hallucination()
score = metric.score(
input="What is the capital of France?",
output="Paris",
context=["France is a country in Europe."]
)
print(score)
```
Opik also includes a number of pre-built heuristic metrics as well as the ability to create your own. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_3_link&utm_campaign=opik).
### 🔍 Evaluating your LLM Application
Opik allows you to evaluate your LLM application during development through [Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_2_link&utm_campaign=opik) and [Experiments](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=experiments_link&utm_campaign=opik).
You can also run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_2_link&utm_campaign=opik).
## 🤝 Contributing
There are many ways to contribute to Opik:
* Submit [bug reports](https://github.com/comet-ml/opik/issues) and [feature requests](https://github.com/comet-ml/opik/issues)
* Review the documentation and submit [Pull Requests](https://github.com/comet-ml/opik/pulls) to improve it
* Speaking or writing about Opik and [letting us know](https://chat.comet.com)
* Upvoting [popular feature requests](https://github.com/comet-ml/opik/issues?q=is%3Aissue+is%3Aopen+label%3A%22enhancement%22) to show your support
To learn more about how to contribute to Opik, please see our [contributing guidelines](CONTRIBUTING.md).
Raw data
{
"_id": null,
"home_page": "https://www.comet.com",
"name": "opik",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "opik",
"author": "Comet ML Inc.",
"author_email": "mail@comet.com",
"download_url": "https://files.pythonhosted.org/packages/00/ba/e8f84d833d4914ca76565d4e886bdc7d67bbb3dcc716905ec5dce5fe2b80/opik-1.3.1.tar.gz",
"platform": null,
"description": "<h1 align=\"center\" style=\"border-bottom: none\">\n <div>\n <a href=\"https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=header_img&utm_campaign=opik\"><picture>\n <source media=\"(prefers-color-scheme: dark)\" srcset=\"/apps/opik-documentation/documentation/static/img/logo-dark-mode.svg\">\n <source media=\"(prefers-color-scheme: light)\" srcset=\"/apps/opik-documentation/documentation/static/img/opik-logo.svg\">\n <img alt=\"Comet Opik logo\" src=\"/apps/opik-documentation/documentation/static/img/opik-logo.svg\" width=\"200\" />\n </picture></a>\n <br>\n Opik\n </div>\n Open source LLM evaluation framework<br>\n</h1>\n\n<p align=\"center\">\nFrom RAG chatbots to code assistants to complex agentic pipelines and beyond, build LLM systems that run better, faster, and cheaper with tracing, evaluations, and dashboards.\n</p>\n\n<div align=\"center\">\n\n[![Python SDK](https://img.shields.io/pypi/v/opik)](https://pypi.org/project/opik/)\n[![License](https://img.shields.io/github/license/comet-ml/opik)](https://github.com/comet-ml/opik/blob/main/LICENSE)\n[![Build](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml/badge.svg)](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml)\n<a target=\"_blank\" href=\"https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/opik_quickstart.ipynb\">\n\n <!-- <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open Quickstart In Colab\"/> -->\n</a>\n\n</div>\n\n<p align=\"center\">\n <a href=\"https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=website_button&utm_campaign=opik\"><b>Website</b></a> \u2022\n <a href=\"https://chat.comet.com\"><b>Slack community</b></a> \u2022\n <a href=\"https://x.com/Cometml\"><b>Twitter</b></a> \u2022\n <a href=\"https://www.comet.com/docs/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=docs_button&utm_campaign=opik\"><b>Documentation</b></a>\n</p>\n\n![Opik thumbnail](readme-thumbnail.png)\n\n## \ud83d\ude80 What is Opik?\n\nOpik is an open-source platform for evaluating, testing and monitoring LLM applications. Built by [Comet](https://www.comet.com?from=llm&utm_source=opik&utm_medium=github&utm_content=what_is_opik_link&utm_campaign=opik).\n\n<br>\n\nYou can use Opik for:\n* **Development:**\n\n * **Tracing:** Track all LLM calls and traces during development and production ([Quickstart](https://www.comet.com/docs/opik/quickstart/?from=llm&utm_source=opik&utm_medium=github&utm_content=quickstart_link&utm_campaign=opik), [Integrations](https://www.comet.com/docs/opik/tracing/integrations/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=integrations_link&utm_campaign=opik)\n\n * **Annotations:** Annotate your LLM calls by logging feedback scores using the [Python SDK](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-and-spans-using-the-sdk?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link&utm_campaign=opik) or the [UI](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-through-the-ui?from=llm&utm_source=opik&utm_medium=github&utm_content=ui_link&utm_campaign=opik).\n\n * **Playground:**: Try out different prompts and models in the [prompt playground](https://www.comet.com/docs/opik/evaluation/playground/?from=llm&utm_source=opik&utm_medium=github&utm_content=playground_link&utm_campaign=opik)\n\n* **Evaluation**: Automate the evaluation process of your LLM application:\n\n * **Datasets and Experiments**: Store test cases and run experiments ([Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_link&utm_campaign=opik), [Evaluate your LLM Application](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=eval_link&utm_campaign=opik))\n\n * **LLM as a judge metrics**: Use Opik's LLM as a judge metric for complex issues like [hallucination detection](https://www.comet.com/docs/opik/evaluation/metrics/hallucination/?from=llm&utm_source=opik&utm_medium=github&utm_content=hallucination_link&utm_campaign=opik), [moderation](https://www.comet.com/docs/opik/evaluation/metrics/moderation/?from=llm&utm_source=opik&utm_medium=github&utm_content=moderation_link&utm_campaign=opik) and RAG evaluation ([Answer Relevance](https://www.comet.com/docs/opik/evaluation/metrics/answer_relevance/?from=llm&utm_source=opik&utm_medium=github&utm_content=alex_link&utm_campaign=opik), [Context Precision](https://www.comet.com/docs/opik/evaluation/metrics/context_precision/?from=llm&utm_source=opik&utm_medium=github&utm_content=context_link&utm_campaign=opik)\n\n * **CI/CD integration**: Run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_link&utm_campaign=opik)\n\n* **Production Monitoring**:\n \n * **Log all your production traces**: Opik has been designed to support high volumes of traces, making it easy to monitor your production applications.\n \n * **Monitoring dashboards**: Review your feedback scores, trace count and tokens over time in the [Opik Dashboard](https://www.comet.com/docs/opik/self-host/opik_dashboard/?from=llm&utm_source=opik&utm_medium=github&utm_content=dashboard_link&utm_campaign=opik).\n\n> [!TIP] \n> If you are looking for features that Opik doesn't have today, please raise a new [Feature request](https://github.com/comet-ml/opik/issues/new/choose) \ud83d\ude80\n\n<br>\n\n## \ud83d\udee0\ufe0f Installation\nOpik is available as a fully open source local installation or using Comet.com as a hosted solution.\nThe easiest way to get started with Opik is by creating a free Comet account at [comet.com](https://www.comet.com/signup?from=llm&utm_source=opik&utm_medium=github&utm_content=install&utm_campaign=opik).\n\nIf you'd like to self-host Opik, you can do so by cloning the repository and starting the platform using Docker Compose:\n\n```bash\n# Clone the Opik repository\ngit clone https://github.com/comet-ml/opik.git\n\n# Navigate to the opik/deployment/docker-compose directory\ncd opik/deployment/docker-compose\n\n# Start the Opik platform\ndocker compose up --detach\n\n# You can now visit http://localhost:5173 on your browser!\n```\n\nFor more information about the different deployment options, please see our deployment guides:\n\n| Installation methods | Docs link |\n| ------------------- | --------- |\n| Local instance | [![Local Deployment](https://img.shields.io/badge/Local%20Deployments-%232496ED?style=flat&logo=docker&logoColor=white)](https://www.comet.com/docs/opik/self-host/local_deployment?from=llm&utm_source=opik&utm_medium=github&utm_content=self_host_link&utm_campaign=opik)\n| Kubernetes | [![Kubernetes](https://img.shields.io/badge/Kubernetes-%23326ce5.svg?&logo=kubernetes&logoColor=white)](https://www.comet.com/docs/opik/self-host/kubernetes/#kubernetes-installation?from=llm&utm_source=opik&utm_medium=github&utm_content=kubernetes_link&utm_campaign=opik)\n\n\n## \ud83c\udfc1 Get Started\n\nTo get started, you will need to first install the Python SDK:\n\n```bash\npip install opik\n```\n\nOnce the SDK is installed, you can configure it by running the `opik configure` command:\n\n```bash\nopik configure\n```\n\nThis will allow you to configure Opik locally by setting the correct local server address or if you're using the Cloud platform by setting the API Key\n\n> [!TIP] \n> You can also call the `opik.configure(use_local=True)` method from your Python code to configure the SDK to run on the local installation.\n\nYou are now ready to start logging traces using the [Python SDK](https://www.comet.com/docs/opik/python-sdk-reference/?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link2&utm_campaign=opik).\n\n### \ud83d\udcdd Logging Traces\n\nThe easiest way to get started is to use one of our integrations. Opik supports:\n\n| Integration | Description | Documentation | Try in Colab |\n| ----------- | ---------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n| OpenAI | Log traces for all OpenAI LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/openai/?utm_source=opik&utm_medium=github&utm_content=openai_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/openai.ipynb) |\n| LiteLLM | Call any LLM model using the OpenAI format | [Documentation](/tracing/integrations/litellm.md) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/litellm.ipynb) |\n| LangChain | Log traces for all LangChain LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langchain/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langchain.ipynb) |\n| Haystack | Log traces for all Haystack calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/haystack/?utm_source=opik&utm_medium=github&utm_content=haystack_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/haystack.ipynb) |\n| Bedrock | Log traces for all Bedrock LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/bedrock?utm_source=opik&utm_medium=github&utm_content=bedrock_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/bedrock.ipynb) |\n| Anthropic | Log traces for all Anthropic LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/anthropic?utm_source=opik&utm_medium=github&utm_content=anthropic_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/anthropic.ipynb) |\n| Gemini | Log traces for all Gemini LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/gemini?utm_source=opik&utm_medium=github&utm_content=gemini_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/gemini.ipynb) |\n| Groq | Log traces for all Groq LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/groq?utm_source=opik&utm_medium=github&utm_content=groq_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/groq.ipynb) |\n| LangGraph | Log traces for all LangGraph executions | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langgraph/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langgraph.ipynb) |\n| LlamaIndex | Log traces for all LlamaIndex LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/llama_index?utm_source=opik&utm_medium=github&utm_content=llama_index_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/llama-index.ipynb) |\n| Ollama | Log traces for all Ollama LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ollama?utm_source=opik&utm_medium=github&utm_content=ollama_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ollama.ipynb) |\n| Predibase | Fine-tune and serve open-source Large Language Models | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/predibase?utm_source=opik&utm_medium=github&utm_content=predibase_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/predibase.ipynb) |\n| Ragas | Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ragas?utm_source=opik&utm_medium=github&utm_content=ragas_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ragas.ipynb) |\n| watsonx | Log traces for all watsonx LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/watsonx?utm_source=opik&utm_medium=github&utm_content=watsonx_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/watsonx.ipynb) |\n\n> [!TIP] \n> If the framework you are using is not listed above, feel free to [open an issue](https://github.com/comet-ml/opik/issues) or submit a PR with the integration.\n\nIf you are not using any of the frameworks above, you can also use the `track` function decorator to [log traces](https://www.comet.com/docs/opik/tracing/log_traces/?from=llm&utm_source=opik&utm_medium=github&utm_content=traces_link&utm_campaign=opik):\n\n```python\nimport opik\n\nopik.configure(use_local=True) # Run locally\n\n@opik.track\ndef my_llm_function(user_question: str) -> str:\n # Your LLM code here\n\n return \"Hello\"\n```\n\n> [!TIP] \n> The track decorator can be used in conjunction with any of our integrations and can also be used to track nested function calls.\n\n### \ud83e\uddd1\u200d\u2696\ufe0f LLM as a Judge metrics\n\nThe Python Opik SDK includes a number of LLM as a judge metrics to help you evaluate your LLM application. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_2_link&utm_campaign=opik).\n\nTo use them, simply import the relevant metric and use the `score` function:\n\n```python\nfrom opik.evaluation.metrics import Hallucination\n\nmetric = Hallucination()\nscore = metric.score(\n input=\"What is the capital of France?\",\n output=\"Paris\",\n context=[\"France is a country in Europe.\"]\n)\nprint(score)\n```\n\nOpik also includes a number of pre-built heuristic metrics as well as the ability to create your own. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_3_link&utm_campaign=opik).\n\n### \ud83d\udd0d Evaluating your LLM Application\n\nOpik allows you to evaluate your LLM application during development through [Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_2_link&utm_campaign=opik) and [Experiments](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=experiments_link&utm_campaign=opik).\n\nYou can also run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_2_link&utm_campaign=opik).\n\n## \ud83e\udd1d Contributing\n\nThere are many ways to contribute to Opik:\n\n* Submit [bug reports](https://github.com/comet-ml/opik/issues) and [feature requests](https://github.com/comet-ml/opik/issues)\n* Review the documentation and submit [Pull Requests](https://github.com/comet-ml/opik/pulls) to improve it\n* Speaking or writing about Opik and [letting us know](https://chat.comet.com)\n* Upvoting [popular feature requests](https://github.com/comet-ml/opik/issues?q=is%3Aissue+is%3Aopen+label%3A%22enhancement%22) to show your support\n\nTo learn more about how to contribute to Opik, please see our [contributing guidelines](CONTRIBUTING.md).\n",
"bugtrack_url": null,
"license": "Apache 2.0 License",
"summary": "Comet tool for logging and evaluating LLM traces",
"version": "1.3.1",
"project_urls": {
"Homepage": "https://www.comet.com",
"Source code": "https://github.com/comet-ml/opik"
},
"split_keywords": [
"opik"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b2d8eee52e1b5f7e349dce500c8970a82fed248718ea1d2edf79b3543f24f089",
"md5": "1e1b121f763091422ba59499d3339f28",
"sha256": "3921d7f9a77a2c427ead5c9ffbafac3a782ffa808cf0988564f5d8c4776d1131"
},
"downloads": -1,
"filename": "opik-1.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1e1b121f763091422ba59499d3339f28",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 302745,
"upload_time": "2024-12-27T09:16:23",
"upload_time_iso_8601": "2024-12-27T09:16:23.401877Z",
"url": "https://files.pythonhosted.org/packages/b2/d8/eee52e1b5f7e349dce500c8970a82fed248718ea1d2edf79b3543f24f089/opik-1.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "00bae8f84d833d4914ca76565d4e886bdc7d67bbb3dcc716905ec5dce5fe2b80",
"md5": "989af8662f86500b9b0eff018f40cf09",
"sha256": "cdbe9556f354215fbbe8739a79dc363535c57bd44f6ad2d9d747d0c58edd2c1b"
},
"downloads": -1,
"filename": "opik-1.3.1.tar.gz",
"has_sig": false,
"md5_digest": "989af8662f86500b9b0eff018f40cf09",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 160671,
"upload_time": "2024-12-27T09:16:25",
"upload_time_iso_8601": "2024-12-27T09:16:25.905350Z",
"url": "https://files.pythonhosted.org/packages/00/ba/e8f84d833d4914ca76565d4e886bdc7d67bbb3dcc716905ec5dce5fe2b80/opik-1.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-27 09:16:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "comet-ml",
"github_project": "opik",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "opik"
}