optimizer-rag


Nameoptimizer-rag JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA document compression and optimization library using Groq LLMs and LangChain
upload_time2025-07-28 21:21:26
maintainerNone
docs_urlNone
authorMihir Kapile
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Optimizer

Optimizer is a Python library for compressing large documents using LLMs like Groq. It provides functionality for summarizing document chunks based on a query, selecting the most relevant summaries, and managing token budgets effectively — ideal for RAG (Retrieval Augmented Generation) applications.

## Features

- Summarize document chunks using Groq models
- Select relevant summaries based on token limits
- Easily integrate with any RAG pipeline

## Installation

```bash
pip install optimizer-groq
```

## Requirements

Make sure the following packages are installed (handled automatically if installing via pip):

```text
langchain>=0.1.16
groq
tiktoken
numpy
scikit-learn
sentence-transformers
python-dotenv
```

## Usage

```python
from optimizer.compressor import compress_chunk

chunks = ["Paragraph 1...", "Paragraph 2...", "Paragraph 3..."]
query = "What are the benefits of renewable energy?"
token_budget = 512

selected = compress_chunk(chunks, query, token_budget)
print(selected)
```

You can also customize the model by injecting the model into the library functions like this.

```python
from openai import OpenAI
from optimizer.compressor import compress_chunk

client = OpenAI(api_key="your-openai-api-key")

chunks = ["Text A...", "Text B..."]
query = "Summarize risks."
token_budget = 400

summaries = compress_chunk(chunks, query, token_budget, client=client, model="gpt-4")
```


## Environment Setup

Set your Groq API key in a `.env` file:

```env
GROQ_API_KEY=your_groq_api_key_here
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "optimizer-rag",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Mihir Kapile",
    "author_email": "mihirkapile@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/31/ff/b7cf62dbf17e63ae8cf323c6b7bb7ba290cfd8d1b822a2e40918fcf0deb7/optimizer_rag-0.1.1.tar.gz",
    "platform": null,
    "description": "# Optimizer\r\n\r\nOptimizer is a Python library for compressing large documents using LLMs like Groq. It provides functionality for summarizing document chunks based on a query, selecting the most relevant summaries, and managing token budgets effectively \u00e2\u20ac\u201d ideal for RAG (Retrieval Augmented Generation) applications.\r\n\r\n## Features\r\n\r\n- Summarize document chunks using Groq models\r\n- Select relevant summaries based on token limits\r\n- Easily integrate with any RAG pipeline\r\n\r\n## Installation\r\n\r\n```bash\r\npip install optimizer-groq\r\n```\r\n\r\n## Requirements\r\n\r\nMake sure the following packages are installed (handled automatically if installing via pip):\r\n\r\n```text\r\nlangchain>=0.1.16\r\ngroq\r\ntiktoken\r\nnumpy\r\nscikit-learn\r\nsentence-transformers\r\npython-dotenv\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom optimizer.compressor import compress_chunk\r\n\r\nchunks = [\"Paragraph 1...\", \"Paragraph 2...\", \"Paragraph 3...\"]\r\nquery = \"What are the benefits of renewable energy?\"\r\ntoken_budget = 512\r\n\r\nselected = compress_chunk(chunks, query, token_budget)\r\nprint(selected)\r\n```\r\n\r\nYou can also customize the model by injecting the model into the library functions like this.\r\n\r\n```python\r\nfrom openai import OpenAI\r\nfrom optimizer.compressor import compress_chunk\r\n\r\nclient = OpenAI(api_key=\"your-openai-api-key\")\r\n\r\nchunks = [\"Text A...\", \"Text B...\"]\r\nquery = \"Summarize risks.\"\r\ntoken_budget = 400\r\n\r\nsummaries = compress_chunk(chunks, query, token_budget, client=client, model=\"gpt-4\")\r\n```\r\n\r\n\r\n## Environment Setup\r\n\r\nSet your Groq API key in a `.env` file:\r\n\r\n```env\r\nGROQ_API_KEY=your_groq_api_key_here\r\n```\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A document compression and optimization library using Groq LLMs and LangChain",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "00d1584442dfc38374c60464b70b5076ee20a697cb91c5e4e2939c4794993ce7",
                "md5": "d6ed66fdc9a60998bd014773b205b35d",
                "sha256": "7cc21eb804ee505ede9e5a59e8f06513373d269ea2951c43c025cba0276614b2"
            },
            "downloads": -1,
            "filename": "optimizer_rag-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d6ed66fdc9a60998bd014773b205b35d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5429,
            "upload_time": "2025-07-28T21:21:25",
            "upload_time_iso_8601": "2025-07-28T21:21:25.501598Z",
            "url": "https://files.pythonhosted.org/packages/00/d1/584442dfc38374c60464b70b5076ee20a697cb91c5e4e2939c4794993ce7/optimizer_rag-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "31ffb7cf62dbf17e63ae8cf323c6b7bb7ba290cfd8d1b822a2e40918fcf0deb7",
                "md5": "68296f87c49df9ac6608f0e1b1cc62c6",
                "sha256": "c8dd068e762c69abe3a95aef4d7bf6bc625ed147d2e78f86de4d931f0e3abab5"
            },
            "downloads": -1,
            "filename": "optimizer_rag-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "68296f87c49df9ac6608f0e1b1cc62c6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4216,
            "upload_time": "2025-07-28T21:21:26",
            "upload_time_iso_8601": "2025-07-28T21:21:26.609994Z",
            "url": "https://files.pythonhosted.org/packages/31/ff/b7cf62dbf17e63ae8cf323c6b7bb7ba290cfd8d1b822a2e40918fcf0deb7/optimizer_rag-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 21:21:26",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "optimizer-rag"
}
        
Elapsed time: 2.57959s