optimum-nvidia


Nameoptimum-nvidia JSON
Version 0.1.0b6 PyPI version JSON
download
home_pagehttps://huggingface.co/hardware/nvidia
SummaryOptimum Nvidia is the interface between the Hugging Face Transformers and NVIDIA GPUs. "
upload_time2024-04-11 21:13:38
maintainerNone
docs_urlNone
authorHuggingFace Inc. Machine Learning Optimization Team
requires_python>=3.10
licenseApache/2.0
keywords transformers neural-network inference nvidia tensorrt ampere hopper
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<div align="center">

Optimum-NVIDIA
===========================
<h4> Optimized inference with NVIDIA and Hugging Face </h4>

[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://huggingface.co/docs/optimum/index)
[![python](https://img.shields.io/badge/python-3.10.12-green)](https://www.python.org/downloads/release/python-31013/)
[![cuda](https://img.shields.io/badge/cuda-12.2-green)](https://developer.nvidia.com/cuda-downloads)
[![trt-llm](https://img.shields.io/badge/TensorRT--LLM-0.9.0-green)](https://github.com/nvidia/tensorrt-llm)
[![license](https://img.shields.io/badge/license-Apache%202-blue)](./LICENSE)

---
<div align="left">

Optimum-NVIDIA delivers the best inference performance on the NVIDIA platform through Hugging Face. Run LLaMA 2 at 1,200 tokens/second (up to 28x faster than the framework) by changing just a single line in your existing transformers code.

</div></div>

# Installation

## Pip

Pip installation flow has been validated on Ubuntu only at this stage.

```shell
apt-get update && apt-get -y install python3.10 python3-pip openmpi-bin libopenmpi-dev
python -m pip install --pre --extra-index-url https://pypi.nvidia.com optimum-nvidia
``` 

For developers who want to target the best performances, please look at the installation methods below.

## Docker container
You can use a Docker container to try Optimum-NVIDIA today. Images are available on the Hugging Face Docker Hub.

```bash
docker pull huggingface/optimum-nvidia
```

## Building from source
<!---
Currently, TRT LLM is built and run with Docker, so we should wait until pip installation is available;
Ideally the user doesn't need to use docker at all to build from source, they should be able to run something like
`git clone [...] && pip install -e optimum-nvidia`
-->

Instead of using the pre-built docker container, you can build Optimum-NVIDIA from source:
```bash
TARGET_SM="90-real;89-real"
git clone --recursive --depth=1 https://github.com/huggingface/optimum-nvidia.git
cd optimum-nvidia/third-party/tensorrt-llm
make -C docker release_build CUDA_ARCHS=$TARGET_SM
cd ../.. && docker build -t <organisation_name/image_name>:<version> -f docker/Dockerfile .
```

<!-- 
```bash
git clone git@github.com:huggingface/optimum-nvidia.git
cd optimum-nvidia
docker build Dockerfile
docker run optimum-nvidia
``` -->

# Quickstart Guide
## Pipelines

Hugging Face pipelines provide a simple yet powerful abstraction to quickly set up inference. If you already have a pipeline from transformers, you can unlock the performance benefits of Optimum-NVIDIA by just changing one line.

```diff
- from transformers.pipelines import pipeline
+ from optimum.nvidia.pipelines import pipeline

pipe = pipeline('text-generation', 'meta-llama/Llama-2-7b-chat-hf', use_fp8=True)
pipe("Describe a real-world application of AI in sustainable energy.")
```

## Generate

If you want control over advanced features like quantization and token selection strategies, we recommend using the `generate()` API. Just like with `pipelines`, switching from existing transformers code is super simple.

```diff
- from transformers import AutoModelForCausalLM
+ from optimum.nvidia import AutoModelForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", padding_side="left")

model = AutoModelForCausalLM.from_pretrained(
  "meta-llama/Llama-2-7b-chat-hf",
+ use_fp8=True,  
)

model_inputs = tokenizer(["How is autonomous vehicle technology transforming the future of transportation and urban planning?"], return_tensors="pt").to("cuda")

generated_ids = model.generate(
    **model_inputs, 
    top_k=40, 
    top_p=0.7, 
    repetition_penalty=10,
)

tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

To learn more about text generation with LLMs, check out [this guide](https://huggingface.co/docs/transformers/llm_tutorial)!

<!-- For more details, read our [documentation](https://huggingface.com/docs/optimum/nvidia/index). -->

# Support Matrix
We test Optimum-NVIDIA on 4090, L40S, and H100 Tensor Core GPUs, though it is expected to work on any GPU based on the following architectures: 
* Turing (with experimental support for T4 / RTX Quadro x000)
* Ampere (A100/A30 are supported. Experimental support for A10, A40, RTX Ax000)
* Hopper
* Ada-Lovelace

Note that FP8 support is only available on GPUs based on Hopper and Ada-Lovelace architectures.

Optimum-NVIDIA works on Linux will support Windows soon.

Optimum-NVIDIA currently accelerates text-generation with LLaMAForCausalLM, and we are actively working to expand support to include more model architectures and tasks.

<!-- Optimum-NVIDIA supports the following model architectures and tasks:

| Model             | Tasks           |
| :----             | :----           |
| Gemma             | TextGeneration  |
| Llama             | TextGeneration  |
| Mistral           | TextGeneration  |
| Additional Models | Coming soon     | -->

# Contributing

Check out our [Contributing Guide](./CONTRIBUTING.md)

            

Raw data

            {
    "_id": null,
    "home_page": "https://huggingface.co/hardware/nvidia",
    "name": "optimum-nvidia",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "transformers, neural-network, inference, nvidia, tensorrt, ampere, hopper",
    "author": "HuggingFace Inc. Machine Learning Optimization Team",
    "author_email": "\"HuggingFace Inc. Machine Learning Optimization Team\" <hardware@huggingface.co>",
    "download_url": "https://files.pythonhosted.org/packages/6b/82/f25f93ddba8a18d5aff8dc2b15ebf7aaf98d1e33823305b36ab49af0ed45/optimum-nvidia-0.1.0b6.tar.gz",
    "platform": null,
    "description": "\n<div align=\"center\">\n\nOptimum-NVIDIA\n===========================\n<h4> Optimized inference with NVIDIA and Hugging Face </h4>\n\n[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://huggingface.co/docs/optimum/index)\n[![python](https://img.shields.io/badge/python-3.10.12-green)](https://www.python.org/downloads/release/python-31013/)\n[![cuda](https://img.shields.io/badge/cuda-12.2-green)](https://developer.nvidia.com/cuda-downloads)\n[![trt-llm](https://img.shields.io/badge/TensorRT--LLM-0.9.0-green)](https://github.com/nvidia/tensorrt-llm)\n[![license](https://img.shields.io/badge/license-Apache%202-blue)](./LICENSE)\n\n---\n<div align=\"left\">\n\nOptimum-NVIDIA delivers the best inference performance on the NVIDIA platform through Hugging Face. Run LLaMA 2 at 1,200 tokens/second (up to 28x faster than the framework) by changing just a single line in your existing transformers code.\n\n</div></div>\n\n# Installation\n\n## Pip\n\nPip installation flow has been validated on Ubuntu only at this stage.\n\n```shell\napt-get update && apt-get -y install python3.10 python3-pip openmpi-bin libopenmpi-dev\npython -m pip install --pre --extra-index-url https://pypi.nvidia.com optimum-nvidia\n``` \n\nFor developers who want to target the best performances, please look at the installation methods below.\n\n## Docker container\nYou can use a Docker container to try Optimum-NVIDIA today. Images are available on the Hugging Face Docker Hub.\n\n```bash\ndocker pull huggingface/optimum-nvidia\n```\n\n## Building from source\n<!---\nCurrently, TRT LLM is built and run with Docker, so we should wait until pip installation is available;\nIdeally the user doesn't need to use docker at all to build from source, they should be able to run something like\n`git clone [...] && pip install -e optimum-nvidia`\n-->\n\nInstead of using the pre-built docker container, you can build Optimum-NVIDIA from source:\n```bash\nTARGET_SM=\"90-real;89-real\"\ngit clone --recursive --depth=1 https://github.com/huggingface/optimum-nvidia.git\ncd optimum-nvidia/third-party/tensorrt-llm\nmake -C docker release_build CUDA_ARCHS=$TARGET_SM\ncd ../.. && docker build -t <organisation_name/image_name>:<version> -f docker/Dockerfile .\n```\n\n<!-- \n```bash\ngit clone git@github.com:huggingface/optimum-nvidia.git\ncd optimum-nvidia\ndocker build Dockerfile\ndocker run optimum-nvidia\n``` -->\n\n# Quickstart Guide\n## Pipelines\n\nHugging Face pipelines provide a simple yet powerful abstraction to quickly set up inference. If you already have a pipeline from transformers, you can unlock the performance benefits of Optimum-NVIDIA by just changing one line.\n\n```diff\n- from transformers.pipelines import pipeline\n+ from optimum.nvidia.pipelines import pipeline\n\npipe = pipeline('text-generation', 'meta-llama/Llama-2-7b-chat-hf', use_fp8=True)\npipe(\"Describe a real-world application of AI in sustainable energy.\")\n```\n\n## Generate\n\nIf you want control over advanced features like quantization and token selection strategies, we recommend using the `generate()` API. Just like with `pipelines`, switching from existing transformers code is super simple.\n\n```diff\n- from transformers import AutoModelForCausalLM\n+ from optimum.nvidia import AutoModelForCausalLM\nfrom transformers import AutoTokenizer\n\ntokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Llama-2-7b-chat-hf\", padding_side=\"left\")\n\nmodel = AutoModelForCausalLM.from_pretrained(\n  \"meta-llama/Llama-2-7b-chat-hf\",\n+ use_fp8=True,  \n)\n\nmodel_inputs = tokenizer([\"How is autonomous vehicle technology transforming the future of transportation and urban planning?\"], return_tensors=\"pt\").to(\"cuda\")\n\ngenerated_ids = model.generate(\n    **model_inputs, \n    top_k=40, \n    top_p=0.7, \n    repetition_penalty=10,\n)\n\ntokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]\n```\n\nTo learn more about text generation with LLMs, check out [this guide](https://huggingface.co/docs/transformers/llm_tutorial)!\n\n<!-- For more details, read our [documentation](https://huggingface.com/docs/optimum/nvidia/index). -->\n\n# Support Matrix\nWe test Optimum-NVIDIA on 4090, L40S, and H100 Tensor Core GPUs, though it is expected to work on any GPU based on the following architectures: \n* Turing (with experimental support for T4 / RTX Quadro x000)\n* Ampere (A100/A30 are supported. Experimental support for A10, A40, RTX Ax000)\n* Hopper\n* Ada-Lovelace\n\nNote that FP8 support is only available on GPUs based on Hopper and Ada-Lovelace architectures.\n\nOptimum-NVIDIA works on Linux will support Windows soon.\n\nOptimum-NVIDIA currently accelerates text-generation with LLaMAForCausalLM, and we are actively working to expand support to include more model architectures and tasks.\n\n<!-- Optimum-NVIDIA supports the following model architectures and tasks:\n\n| Model             | Tasks           |\n| :----             | :----           |\n| Gemma             | TextGeneration  |\n| Llama             | TextGeneration  |\n| Mistral           | TextGeneration  |\n| Additional Models | Coming soon     | -->\n\n# Contributing\n\nCheck out our [Contributing Guide](./CONTRIBUTING.md)\n",
    "bugtrack_url": null,
    "license": "Apache/2.0",
    "summary": "Optimum Nvidia is the interface between the Hugging Face Transformers and NVIDIA GPUs. \"",
    "version": "0.1.0b6",
    "project_urls": {
        "Homepage": "https://huggingface.co/hardware/nvidia",
        "Issues": "https://github.com/huggingface/optimum-nvidia/issues",
        "Repository": "https://github.com/huggingface/optimum-nvidia"
    },
    "split_keywords": [
        "transformers",
        " neural-network",
        " inference",
        " nvidia",
        " tensorrt",
        " ampere",
        " hopper"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d615fc0918621f3fcc1f34ac856684312b2839b8fe4faa296a89992cd3887186",
                "md5": "c2a80dd896777db0e48c581cb72aeaff",
                "sha256": "6aa8fb61be830a84df3a9bf3d08da174df69dc435b8589480770d9895354376e"
            },
            "downloads": -1,
            "filename": "optimum_nvidia-0.1.0b6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c2a80dd896777db0e48c581cb72aeaff",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 73735,
            "upload_time": "2024-04-11T21:13:36",
            "upload_time_iso_8601": "2024-04-11T21:13:36.642294Z",
            "url": "https://files.pythonhosted.org/packages/d6/15/fc0918621f3fcc1f34ac856684312b2839b8fe4faa296a89992cd3887186/optimum_nvidia-0.1.0b6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6b82f25f93ddba8a18d5aff8dc2b15ebf7aaf98d1e33823305b36ab49af0ed45",
                "md5": "22e7e14c9941459aa6b056492beb47a4",
                "sha256": "564f8cfcfae1582bc7c2bf5ed55adea9ee9663e4cfbf21272243c63c891e5e8f"
            },
            "downloads": -1,
            "filename": "optimum-nvidia-0.1.0b6.tar.gz",
            "has_sig": false,
            "md5_digest": "22e7e14c9941459aa6b056492beb47a4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 53727,
            "upload_time": "2024-04-11T21:13:38",
            "upload_time_iso_8601": "2024-04-11T21:13:38.539937Z",
            "url": "https://files.pythonhosted.org/packages/6b/82/f25f93ddba8a18d5aff8dc2b15ebf7aaf98d1e33823305b36ab49af0ed45/optimum-nvidia-0.1.0b6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-11 21:13:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "huggingface",
    "github_project": "optimum-nvidia",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "optimum-nvidia"
}
        
Elapsed time: 0.22101s