optuna-integration


Nameoptuna-integration JSON
Version 4.5.0 PyPI version JSON
download
home_pageNone
SummaryIntegration libraries of Optuna.
upload_time2025-08-18 06:36:58
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # Optuna-Integration

[![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/optuna-integration.svg)](https://pypi.python.org/pypi/optuna-integration)
[![conda](https://img.shields.io/conda/vn/conda-forge/optuna-integration.svg)](https://anaconda.org/conda-forge/optuna-integration)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna-integration)
[![Codecov](https://codecov.io/gh/optuna/optuna-integration/branch/main/graph/badge.svg)](https://codecov.io/gh/optuna/optuna-integration/branch/main)
[![Read the Docs](https://readthedocs.org/projects/optuna-integration/badge/?version=stable)](https://optuna-integration.readthedocs.io/en/stable/)

This package is an integration module of [Optuna](https://github.com/optuna/optuna), an automatic Hyperparameter optimization software framework.
The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.

> [!NOTE]
> You can find more information in [**our official documentations**](https://optuna-integration.readthedocs.io/en/stable/) and [**API reference**](https://optuna-integration.readthedocs.io/en/stable/reference/index.html).

## Installation

Optuna-Integration is available via [pip](https://pypi.org/project/optuna-integration/) and
on [conda](https://anaconda.org/conda-forge/optuna-integration).

```bash
# PyPI
$ pip install optuna-integration

# Anaconda Cloud
$ conda install -c conda-forge optuna-integration
```

> [!IMPORTANT]
> As dependencies of all the modules are large and complicated, the commands above install only the common dependencies.
> Dependencies for each module can be installed via pip.
> For example, if you would like to install the dependencies of `optuna_integration.botorch` and `optuna_integration.lightgbm`, you can install them via:
> ```shell
> $ pip install optuna-integration[botorch,lightgbm]
> ```

> [!NOTE]
> Optuna-Integration supports from Python 3.8 to Python 3.12.
> Optuna Docker image is also provided at [DockerHub](https://hub.docker.com/r/optuna/optuna).

## Integration Modules

Here is the table of `optuna-integration` modules:

|Third Party Library| Example |
|:--|:--|
|[BoTorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#botorch)| Unavailable |
|[CatBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#catboost)|[CatBoostPruningCallback](https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py)|
|[Dask](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#dask)|[DaskStorage](https://github.com/optuna/optuna-examples/tree/main/dask/dask_simple.py)|
|[FastAI](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#fast-ai)|[FastAIPruningCallback](https://github.com/optuna/optuna-examples/tree/main/fastai/fastai_simple.py)|
|[Keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#keras)|[KerasPruningCallback](https://github.com/optuna/optuna-examples/blob/main/keras/keras_integration.py)|
|[LightGBM](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#lightgbm)|[LightGBMPruningCallback](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py) / [LightGBMTuner](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_tuner_simple.py)|
|[MLflow](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mlflow)|[MLflowCallback](https://github.com/optuna/optuna-examples/blob/main/mlflow/keras_mlflow.py)|
|[PyTorch Distributed](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[TorchDistributedTrial](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py)|
|[PyTorch Ignite](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchIgnitePruningHandler](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py)|
|[PyTorch Lightning](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchLightningPruningCallback](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py)|
|[pycma](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pycma)|[PyCma Sampler](https://github.com/optuna/optuna-integration/blob/v4.4.0/optuna_integration/cma/cma.py#L44-L64)|
|[SHAP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#shap)|[SHAP Importance Evaluator](https://github.com/optuna/optuna-integration/blob/v4.4.0/optuna_integration/shap/shap.py#L29-L45)|
|[scikit-learn](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#sklearn)|[OptunaSearchCV](https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_optuna_search_cv_simple.py)|
|[skorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#skorch)|[SkorchPruningCallback](https://github.com/optuna/optuna-examples/tree/main/pytorch/skorch_simple.py)|
|[TensorBoard](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorboard)|[TensorBoardCallback](https://github.com/optuna/optuna-examples/tree/main/tensorboard/tensorboard_simple.py)|
|[tf.keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorflow)|[TFKerasPruningCallback](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)|
|[Weights & Biases](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#wandb)|[WeightsAndBiasesCallback](https://github.com/optuna/optuna-examples/blob/main/wandb/wandb_integration.py)|
|[XGBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#xgboost)|[XGBoostPruningCallback](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)|
|[AllenNLP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#allennlp)*|[AllenNLPPruningCallback](https://github.com/optuna/optuna-examples/blob/main/allennlp/allennlp_simple.py)|
|[Chainer](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainer)*|[ChainerPruningExtension](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)|
|[ChainerMN](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainermn)* | [ChainerMNStudy](https://github.com/optuna/optuna-examples/tree/main/chainer/chainermn_simple.py) |
|[MXNet](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mxnet)*|Unavailable|

> [!WARNING]
> `*` shows deprecated modules and they might be removed in the future.

## Communication

* [GitHub Discussions] for questions.
* [GitHub Issues] for bug reports and feature requests.

[GitHub Discussions]: https://github.com/optuna/optuna-integration/discussions

[GitHub issues]: https://github.com/optuna/optuna-integration/issues

## Contribution

Any contributions to Optuna-Integration are more than welcome!

For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).

## Reference

If you use Optuna in one of your research projects, please cite [our KDD paper](https://doi.org/10.1145/3292500.3330701) "Optuna: A Next-generation Hyperparameter Optimization Framework":

<details open>
<summary>BibTeX</summary>

```bibtex
@inproceedings{akiba2019optuna,
  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={2623--2631},
  year={2019}
}
```
</details>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "optuna-integration",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/55/99/7828608f7b2612500f81b332f6d36e15b02d9999e9d03e614ffe32904bf2/optuna_integration-4.5.0.tar.gz",
    "platform": null,
    "description": "# Optuna-Integration\n\n[![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://www.python.org)\n[![pypi](https://img.shields.io/pypi/v/optuna-integration.svg)](https://pypi.python.org/pypi/optuna-integration)\n[![conda](https://img.shields.io/conda/vn/conda-forge/optuna-integration.svg)](https://anaconda.org/conda-forge/optuna-integration)\n[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna-integration)\n[![Codecov](https://codecov.io/gh/optuna/optuna-integration/branch/main/graph/badge.svg)](https://codecov.io/gh/optuna/optuna-integration/branch/main)\n[![Read the Docs](https://readthedocs.org/projects/optuna-integration/badge/?version=stable)](https://optuna-integration.readthedocs.io/en/stable/)\n\nThis package is an integration module of [Optuna](https://github.com/optuna/optuna), an automatic Hyperparameter optimization software framework.\nThe modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.\n\n> [!NOTE]\n> You can find more information in [**our official documentations**](https://optuna-integration.readthedocs.io/en/stable/) and [**API reference**](https://optuna-integration.readthedocs.io/en/stable/reference/index.html).\n\n## Installation\n\nOptuna-Integration is available via [pip](https://pypi.org/project/optuna-integration/) and\non [conda](https://anaconda.org/conda-forge/optuna-integration).\n\n```bash\n# PyPI\n$ pip install optuna-integration\n\n# Anaconda Cloud\n$ conda install -c conda-forge optuna-integration\n```\n\n> [!IMPORTANT]\n> As dependencies of all the modules are large and complicated, the commands above install only the common dependencies.\n> Dependencies for each module can be installed via pip.\n> For example, if you would like to install the dependencies of `optuna_integration.botorch` and `optuna_integration.lightgbm`, you can install them via:\n> ```shell\n> $ pip install optuna-integration[botorch,lightgbm]\n> ```\n\n> [!NOTE]\n> Optuna-Integration supports from Python 3.8 to Python 3.12.\n> Optuna Docker image is also provided at [DockerHub](https://hub.docker.com/r/optuna/optuna).\n\n## Integration Modules\n\nHere is the table of `optuna-integration` modules:\n\n|Third Party Library| Example |\n|:--|:--|\n|[BoTorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#botorch)| Unavailable |\n|[CatBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#catboost)|[CatBoostPruningCallback](https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py)|\n|[Dask](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#dask)|[DaskStorage](https://github.com/optuna/optuna-examples/tree/main/dask/dask_simple.py)|\n|[FastAI](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#fast-ai)|[FastAIPruningCallback](https://github.com/optuna/optuna-examples/tree/main/fastai/fastai_simple.py)|\n|[Keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#keras)|[KerasPruningCallback](https://github.com/optuna/optuna-examples/blob/main/keras/keras_integration.py)|\n|[LightGBM](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#lightgbm)|[LightGBMPruningCallback](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py) / [LightGBMTuner](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_tuner_simple.py)|\n|[MLflow](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mlflow)|[MLflowCallback](https://github.com/optuna/optuna-examples/blob/main/mlflow/keras_mlflow.py)|\n|[PyTorch Distributed](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[TorchDistributedTrial](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py)|\n|[PyTorch Ignite](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchIgnitePruningHandler](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py)|\n|[PyTorch Lightning](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchLightningPruningCallback](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py)|\n|[pycma](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pycma)|[PyCma Sampler](https://github.com/optuna/optuna-integration/blob/v4.4.0/optuna_integration/cma/cma.py#L44-L64)|\n|[SHAP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#shap)|[SHAP Importance Evaluator](https://github.com/optuna/optuna-integration/blob/v4.4.0/optuna_integration/shap/shap.py#L29-L45)|\n|[scikit-learn](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#sklearn)|[OptunaSearchCV](https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_optuna_search_cv_simple.py)|\n|[skorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#skorch)|[SkorchPruningCallback](https://github.com/optuna/optuna-examples/tree/main/pytorch/skorch_simple.py)|\n|[TensorBoard](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorboard)|[TensorBoardCallback](https://github.com/optuna/optuna-examples/tree/main/tensorboard/tensorboard_simple.py)|\n|[tf.keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorflow)|[TFKerasPruningCallback](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)|\n|[Weights & Biases](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#wandb)|[WeightsAndBiasesCallback](https://github.com/optuna/optuna-examples/blob/main/wandb/wandb_integration.py)|\n|[XGBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#xgboost)|[XGBoostPruningCallback](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)|\n|[AllenNLP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#allennlp)*|[AllenNLPPruningCallback](https://github.com/optuna/optuna-examples/blob/main/allennlp/allennlp_simple.py)|\n|[Chainer](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainer)*|[ChainerPruningExtension](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)|\n|[ChainerMN](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainermn)* | [ChainerMNStudy](https://github.com/optuna/optuna-examples/tree/main/chainer/chainermn_simple.py) |\n|[MXNet](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mxnet)*|Unavailable|\n\n> [!WARNING]\n> `*` shows deprecated modules and they might be removed in the future.\n\n## Communication\n\n* [GitHub Discussions] for questions.\n* [GitHub Issues] for bug reports and feature requests.\n\n[GitHub Discussions]: https://github.com/optuna/optuna-integration/discussions\n\n[GitHub issues]: https://github.com/optuna/optuna-integration/issues\n\n## Contribution\n\nAny contributions to Optuna-Integration are more than welcome!\n\nFor general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).\n\n## Reference\n\nIf you use Optuna in one of your research projects, please cite [our KDD paper](https://doi.org/10.1145/3292500.3330701) \"Optuna: A Next-generation Hyperparameter Optimization Framework\":\n\n<details open>\n<summary>BibTeX</summary>\n\n```bibtex\n@inproceedings{akiba2019optuna,\n  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},\n  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},\n  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \\& Data Mining},\n  pages={2623--2631},\n  year={2019}\n}\n```\n</details>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Integration libraries of Optuna.",
    "version": "4.5.0",
    "project_urls": {
        "repository": "https://github.com/optuna/optuna-integration"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7e3aaf425cfd30aede975cae592285bccf384f0dbd6bd4a0a817ef362cb4fe5d",
                "md5": "df93a7a43146ca132188cfdefb799009",
                "sha256": "88a15aa7cc3020f2d58cb321d83f9fbf7c641a752e81a5b595aaa0f9d2c4e0df"
            },
            "downloads": -1,
            "filename": "optuna_integration-4.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "df93a7a43146ca132188cfdefb799009",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 99113,
            "upload_time": "2025-08-18T06:36:56",
            "upload_time_iso_8601": "2025-08-18T06:36:56.954296Z",
            "url": "https://files.pythonhosted.org/packages/7e/3a/af425cfd30aede975cae592285bccf384f0dbd6bd4a0a817ef362cb4fe5d/optuna_integration-4.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "55997828608f7b2612500f81b332f6d36e15b02d9999e9d03e614ffe32904bf2",
                "md5": "6d69a0a00fcabaf6e91f9bb445057b09",
                "sha256": "e0b917830dd10de63e5f288c3932e1b20f120bae640cb28fbf63fbbedb970e7d"
            },
            "downloads": -1,
            "filename": "optuna_integration-4.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6d69a0a00fcabaf6e91f9bb445057b09",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 86492,
            "upload_time": "2025-08-18T06:36:58",
            "upload_time_iso_8601": "2025-08-18T06:36:58.247055Z",
            "url": "https://files.pythonhosted.org/packages/55/99/7828608f7b2612500f81b332f6d36e15b02d9999e9d03e614ffe32904bf2/optuna_integration-4.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-18 06:36:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "optuna",
    "github_project": "optuna-integration",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "optuna-integration"
}
        
Elapsed time: 9.52415s