Name | optuna-integration JSON |
Version |
4.1.0
JSON |
| download |
home_page | None |
Summary | Integration libraries of Optuna. |
upload_time | 2024-11-12 05:49:34 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Optuna-Integration
[![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/optuna-integration.svg)](https://pypi.python.org/pypi/optuna-integration)
[![conda](https://img.shields.io/conda/vn/conda-forge/optuna-integration.svg)](https://anaconda.org/conda-forge/optuna-integration)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna-integration)
[![Codecov](https://codecov.io/gh/optuna/optuna-integration/branch/main/graph/badge.svg)](https://codecov.io/gh/optuna/optuna-integration/branch/main)
[![Read the Docs](https://readthedocs.org/projects/optuna-integration/badge/?version=stable)](https://optuna-integration.readthedocs.io/en/stable/)
This package is an integration module of [Optuna](https://github.com/optuna/optuna), an automatic Hyperparameter optimization software framework.
The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.
> [!NOTE]
> You can find more information in [**our official documentations**](https://optuna-integration.readthedocs.io/en/stable/) and [**API reference**](https://optuna-integration.readthedocs.io/en/stable/reference/index.html).
## Installation
Optuna-Integration is available via [pip](https://pypi.org/project/optuna-integration/) and
on [conda](https://anaconda.org/conda-forge/optuna-integration).
```bash
# PyPI
$ pip install optuna-integration
# Anaconda Cloud
$ conda install -c conda-forge optuna-integration
```
> [!IMPORTANT]
> As dependencies of all the modules are large and complicated, the commands above install only the common dependencies.
> Dependencies for each module can be installed via pip.
> For example, if you would like to install the dependencies of `optuna_integration.botorch` and `optuna_integration.lightgbm`, you can install them via:
> ```shell
> $ pip install optuna-integration[botorch,lightgbm]
> ```
> [!NOTE]
> Optuna-Integration supports from Python 3.8 to Python 3.12.
> Optuna Docker image is also provided at [DockerHub](https://hub.docker.com/r/optuna/optuna).
## Integration Modules
Here is the table of `optuna-integration` modules:
|Third Party Library| Example |
|:--|:--|
|[BoTorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#botorch)| Unavailable |
|[CatBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#catboost)|[CatBoostPruningCallback](https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py)|
|[Dask](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#dask)|[DaskStorage](https://github.com/optuna/optuna-examples/tree/main/dask/dask_simple.py)|
|[FastAI](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#fast-ai)|[FastAIPruningCallback](https://github.com/optuna/optuna-examples/tree/main/fastai/fastai_simple.py)|
|[Keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#keras)|[KerasPruningCallback](https://github.com/optuna/optuna-examples/blob/main/keras/keras_integration.py)|
|[LightGBM](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#lightgbm)|[LightGBMPruningCallback](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py) / [LightGBMTuner](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_tuner_simple.py)|
|[MLflow](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mlflow)|[MLflowCallback](https://github.com/optuna/optuna-examples/blob/main/mlflow/keras_mlflow.py)|
|[MXNet](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mxnet)|Unavailable|
|[PyTorch Distributed](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[TorchDistributedTrial](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py)|
|[PyTorch Ignite](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchIgnitePruningHandler](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py)|
|[PyTorch Lightning](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchLightningPruningCallback](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py)|
|[pycma](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pycma)|Unavailable|
|[SHAP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#shap)|Unavailable|
|[scikit-learn](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#sklearn)|[OptunaSearchCV](https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_optuna_search_cv_simple.py)|
|[skorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#skorch)|[SkorchPruningCallback](https://github.com/optuna/optuna-examples/tree/main/pytorch/skorch_simple.py)|
|[TensorBoard](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorboard)|[TensorBoardCallback](https://github.com/optuna/optuna-examples/tree/main/tensorboard/tensorboard_simple.py)|
|[tf.keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorflow)|[TFKerasPruningCallback](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)|
|[Weights & Biases](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#wandb)|[WeightsAndBiasesCallback](https://github.com/optuna/optuna-examples/blob/main/wandb/wandb_integration.py)|
|[XGBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#xgboost)|[XGBoostPruningCallback](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)|
|[AllenNLP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#allennlp)*|[AllenNLPPruningCallback](https://github.com/optuna/optuna-examples/blob/main/allennlp/allennlp_simple.py)|
|[Chainer](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainer)*|[ChainerPruningExtension](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)|
|[ChainerMN](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainermn)* | [ChainerMNStudy](https://github.com/optuna/optuna-examples/tree/main/chainer/chainermn_simple.py) |
> [!WARNING]
> `*` shows deprecated modules and they might be removed in the future.
## Communication
* [GitHub Discussions] for questions.
* [GitHub Issues] for bug reports and feature requests.
[GitHub Discussions]: https://github.com/optuna/optuna-integration/discussions
[GitHub issues]: https://github.com/optuna/optuna-integration/issues
## Contribution
Any contributions to Optuna-Integration are more than welcome!
For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).
## Reference
If you use Optuna in one of your research projects, please cite [our KDD paper](https://doi.org/10.1145/3292500.3330701) "Optuna: A Next-generation Hyperparameter Optimization Framework":
<details open>
<summary>BibTeX</summary>
```bibtex
@inproceedings{akiba2019optuna,
title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={2623--2631},
year={2019}
}
```
</details>
Raw data
{
"_id": null,
"home_page": null,
"name": "optuna-integration",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/ab/4b/2290239d6f5c004872353c549d78ea2ee47496b087cc11004b89339e288e/optuna_integration-4.1.0.tar.gz",
"platform": null,
"description": "# Optuna-Integration\n\n[![Python](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://www.python.org)\n[![pypi](https://img.shields.io/pypi/v/optuna-integration.svg)](https://pypi.python.org/pypi/optuna-integration)\n[![conda](https://img.shields.io/conda/vn/conda-forge/optuna-integration.svg)](https://anaconda.org/conda-forge/optuna-integration)\n[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna-integration)\n[![Codecov](https://codecov.io/gh/optuna/optuna-integration/branch/main/graph/badge.svg)](https://codecov.io/gh/optuna/optuna-integration/branch/main)\n[![Read the Docs](https://readthedocs.org/projects/optuna-integration/badge/?version=stable)](https://optuna-integration.readthedocs.io/en/stable/)\n\nThis package is an integration module of [Optuna](https://github.com/optuna/optuna), an automatic Hyperparameter optimization software framework.\nThe modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.\n\n> [!NOTE]\n> You can find more information in [**our official documentations**](https://optuna-integration.readthedocs.io/en/stable/) and [**API reference**](https://optuna-integration.readthedocs.io/en/stable/reference/index.html).\n\n## Installation\n\nOptuna-Integration is available via [pip](https://pypi.org/project/optuna-integration/) and\non [conda](https://anaconda.org/conda-forge/optuna-integration).\n\n```bash\n# PyPI\n$ pip install optuna-integration\n\n# Anaconda Cloud\n$ conda install -c conda-forge optuna-integration\n```\n\n> [!IMPORTANT]\n> As dependencies of all the modules are large and complicated, the commands above install only the common dependencies.\n> Dependencies for each module can be installed via pip.\n> For example, if you would like to install the dependencies of `optuna_integration.botorch` and `optuna_integration.lightgbm`, you can install them via:\n> ```shell\n> $ pip install optuna-integration[botorch,lightgbm]\n> ```\n\n> [!NOTE]\n> Optuna-Integration supports from Python 3.8 to Python 3.12.\n> Optuna Docker image is also provided at [DockerHub](https://hub.docker.com/r/optuna/optuna).\n\n## Integration Modules\n\nHere is the table of `optuna-integration` modules:\n\n|Third Party Library| Example |\n|:--|:--|\n|[BoTorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#botorch)| Unavailable |\n|[CatBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#catboost)|[CatBoostPruningCallback](https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py)|\n|[Dask](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#dask)|[DaskStorage](https://github.com/optuna/optuna-examples/tree/main/dask/dask_simple.py)|\n|[FastAI](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#fast-ai)|[FastAIPruningCallback](https://github.com/optuna/optuna-examples/tree/main/fastai/fastai_simple.py)|\n|[Keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#keras)|[KerasPruningCallback](https://github.com/optuna/optuna-examples/blob/main/keras/keras_integration.py)|\n|[LightGBM](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#lightgbm)|[LightGBMPruningCallback](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py) / [LightGBMTuner](https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_tuner_simple.py)|\n|[MLflow](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mlflow)|[MLflowCallback](https://github.com/optuna/optuna-examples/blob/main/mlflow/keras_mlflow.py)|\n|[MXNet](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#mxnet)|Unavailable|\n|[PyTorch Distributed](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[TorchDistributedTrial](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py)|\n|[PyTorch Ignite](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchIgnitePruningHandler](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py)|\n|[PyTorch Lightning](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pytorch)|[PyTorchLightningPruningCallback](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py)|\n|[pycma](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#pycma)|Unavailable|\n|[SHAP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#shap)|Unavailable|\n|[scikit-learn](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#sklearn)|[OptunaSearchCV](https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_optuna_search_cv_simple.py)|\n|[skorch](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#skorch)|[SkorchPruningCallback](https://github.com/optuna/optuna-examples/tree/main/pytorch/skorch_simple.py)|\n|[TensorBoard](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorboard)|[TensorBoardCallback](https://github.com/optuna/optuna-examples/tree/main/tensorboard/tensorboard_simple.py)|\n|[tf.keras](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#tensorflow)|[TFKerasPruningCallback](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)|\n|[Weights & Biases](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#wandb)|[WeightsAndBiasesCallback](https://github.com/optuna/optuna-examples/blob/main/wandb/wandb_integration.py)|\n|[XGBoost](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#xgboost)|[XGBoostPruningCallback](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)|\n|[AllenNLP](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#allennlp)*|[AllenNLPPruningCallback](https://github.com/optuna/optuna-examples/blob/main/allennlp/allennlp_simple.py)|\n|[Chainer](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainer)*|[ChainerPruningExtension](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)|\n|[ChainerMN](https://optuna-integration.readthedocs.io/en/stable/reference/index.html#chainermn)* | [ChainerMNStudy](https://github.com/optuna/optuna-examples/tree/main/chainer/chainermn_simple.py) |\n\n> [!WARNING]\n> `*` shows deprecated modules and they might be removed in the future.\n\n## Communication\n\n* [GitHub Discussions] for questions.\n* [GitHub Issues] for bug reports and feature requests.\n\n[GitHub Discussions]: https://github.com/optuna/optuna-integration/discussions\n\n[GitHub issues]: https://github.com/optuna/optuna-integration/issues\n\n## Contribution\n\nAny contributions to Optuna-Integration are more than welcome!\n\nFor general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).\n\n## Reference\n\nIf you use Optuna in one of your research projects, please cite [our KDD paper](https://doi.org/10.1145/3292500.3330701) \"Optuna: A Next-generation Hyperparameter Optimization Framework\":\n\n<details open>\n<summary>BibTeX</summary>\n\n```bibtex\n@inproceedings{akiba2019optuna,\n title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},\n author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},\n booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \\& Data Mining},\n pages={2623--2631},\n year={2019}\n}\n```\n</details>\n",
"bugtrack_url": null,
"license": null,
"summary": "Integration libraries of Optuna.",
"version": "4.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fff1b6e9d4dbcb7d2a44c29403e3faedaece45261f179d61d62231f3ac8e6569",
"md5": "ef342ddd9bb0ae684d41b150a51e92bb",
"sha256": "d6ce0ffb650f7783e6cc4a4fd2f684fb1252db441414669b14c01f65b1556a2c"
},
"downloads": -1,
"filename": "optuna_integration-4.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ef342ddd9bb0ae684d41b150a51e92bb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 97435,
"upload_time": "2024-11-12T05:49:32",
"upload_time_iso_8601": "2024-11-12T05:49:32.195415Z",
"url": "https://files.pythonhosted.org/packages/ff/f1/b6e9d4dbcb7d2a44c29403e3faedaece45261f179d61d62231f3ac8e6569/optuna_integration-4.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ab4b2290239d6f5c004872353c549d78ea2ee47496b087cc11004b89339e288e",
"md5": "0321633b0ace8085d4427e285bde81e6",
"sha256": "86201502fab9c3bba8aa6ffaac0f465b0bcdb75ec75fd157eda8b96352fb3cf3"
},
"downloads": -1,
"filename": "optuna_integration-4.1.0.tar.gz",
"has_sig": false,
"md5_digest": "0321633b0ace8085d4427e285bde81e6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 85218,
"upload_time": "2024-11-12T05:49:34",
"upload_time_iso_8601": "2024-11-12T05:49:34.113750Z",
"url": "https://files.pythonhosted.org/packages/ab/4b/2290239d6f5c004872353c549d78ea2ee47496b087cc11004b89339e288e/optuna_integration-4.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-12 05:49:34",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "optuna-integration"
}