or-gym-inventory


Nameor-gym-inventory JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryGymnasium-compatible implementations of classic inventory management environments (Newsvendor, Multi-Echelon, Network) based on OR-Gym.
upload_time2025-07-12 07:31:24
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords reinforcement learning operations research inventory management gymnasium rl
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Gymnasium-Compatible Inventory Management Environments & Benchmarks (or-gym-inventory)

This repository provides `or_gym_inventory`, an installable Python package containing implementations of classic inventory management environments. These environments are adapted from the original [OR-Gym library](https://github.com/hubbs5/or-gym) and updated for compatibility with the [Gymnasium](https://gymnasium.farama.org/) API (the successor to OpenAI Gym).

The package also includes comprehensive benchmarking scripts (located in the `examples/` directory of the source repository) to compare various heuristic, optimization-inspired, and Reinforcement Learning (RL) policies on these environments.

**Environments Included:**
1.  **Newsvendor (`or_gym_inventory.newsvendor`):** Multi-period newsvendor problem with lead times and stochastic Poisson demand (based on Zipkin (2000, 2008), and Balaji et al. 2019, https://arxiv.org/abs/1911.10641). Class: `NewsvendorEnv`.
2.  **Inventory Management (`or_gym_inventory.inventory_management`):** Multi-period, multi-echelon inventory system for a single product (based on Paul Glasserman and Sridhar Tayur (1995) and D. Hubbs (2020)). Includes `InvManagementBacklogEnv` and `InvManagementLostSalesEnv`. 
3.  **Network Inventory Management (`or_gym_inventory.network_management`):** Multi-period, multi-node inventory system with a network structure (factories, distributors, retailers, markets). Includes `NetInvMgmtBacklogEnv` and `NetInvMgmtLostSalesEnv` (based on Paul Glasserman and Sridhar Tayur (1995) and Perez et al. (2021)).

## Features

*   **Installable Package:** Easily install using pip (`pip install or_gym_inventory`).
*   **Gymnasium Compatible:** Environments adhere to the modern Gymnasium API standard (`reset` returns `obs, info`, `step` returns `obs, reward, terminated, truncated, info`).
*   **Three Core Environments:** Covers single-item, multi-echelon, and network inventory problems.
*   **Backlog & Lost Sales Variants:** Specific environment classes (`*BacklogEnv`, `*LostSalesEnv`) implement these dynamics.
*   **Comprehensive Benchmarking Examples:** Includes dedicated scripts (`examples/benchmark_*.py` in the source repo) comparing various agents:
    *   **Baselines:** Random Agent.
    *   **Heuristics:** Relevant heuristics adapted for each environment type (e.g., Order-Up-To, Classic Newsvendor, (s,S) for Newsvendor; Base Stock, Constant Order for multi-echelon/network).
    *   **Stable Baselines3 Agents:** PPO, SAC, TD3, A2C, DDPG examples.
    *   **Ray RLlib Agents:** PPO, SAC examples.
*   **Detailed Reporting (from Benchmarks):** Benchmark examples generate:
    *   Summary tables (CSV).
    *   Raw results per episode (CSV).
    *   Detailed step-by-step data (optional, JSON Lines).
    *   Comparison plots (PNG).

## Installation

You can install the core package using pip:

```bash
pip install or_gym_inventory

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "or-gym-inventory",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "reinforcement learning, operations research, inventory management, gymnasium, rl",
    "author": null,
    "author_email": "Reza Barati <r2barati@torontomu.ca>",
    "download_url": "https://files.pythonhosted.org/packages/60/44/20c4cf33a99008d6aa33306d1ccae4915ffe751642d4b0eac583c1181cab/or_gym_inventory-1.0.0.tar.gz",
    "platform": null,
    "description": "# Gymnasium-Compatible Inventory Management Environments & Benchmarks (or-gym-inventory)\n\nThis repository provides `or_gym_inventory`, an installable Python package containing implementations of classic inventory management environments. These environments are adapted from the original [OR-Gym library](https://github.com/hubbs5/or-gym) and updated for compatibility with the [Gymnasium](https://gymnasium.farama.org/) API (the successor to OpenAI Gym).\n\nThe package also includes comprehensive benchmarking scripts (located in the `examples/` directory of the source repository) to compare various heuristic, optimization-inspired, and Reinforcement Learning (RL) policies on these environments.\n\n**Environments Included:**\n1.  **Newsvendor (`or_gym_inventory.newsvendor`):** Multi-period newsvendor problem with lead times and stochastic Poisson demand (based on Zipkin (2000, 2008), and Balaji et al. 2019, https://arxiv.org/abs/1911.10641). Class: `NewsvendorEnv`.\n2.  **Inventory Management (`or_gym_inventory.inventory_management`):** Multi-period, multi-echelon inventory system for a single product (based on Paul Glasserman and Sridhar Tayur (1995) and D. Hubbs (2020)). Includes `InvManagementBacklogEnv` and `InvManagementLostSalesEnv`. \n3.  **Network Inventory Management (`or_gym_inventory.network_management`):** Multi-period, multi-node inventory system with a network structure (factories, distributors, retailers, markets). Includes `NetInvMgmtBacklogEnv` and `NetInvMgmtLostSalesEnv` (based on Paul Glasserman and Sridhar Tayur (1995) and Perez et al. (2021)).\n\n## Features\n\n*   **Installable Package:** Easily install using pip (`pip install or_gym_inventory`).\n*   **Gymnasium Compatible:** Environments adhere to the modern Gymnasium API standard (`reset` returns `obs, info`, `step` returns `obs, reward, terminated, truncated, info`).\n*   **Three Core Environments:** Covers single-item, multi-echelon, and network inventory problems.\n*   **Backlog & Lost Sales Variants:** Specific environment classes (`*BacklogEnv`, `*LostSalesEnv`) implement these dynamics.\n*   **Comprehensive Benchmarking Examples:** Includes dedicated scripts (`examples/benchmark_*.py` in the source repo) comparing various agents:\n    *   **Baselines:** Random Agent.\n    *   **Heuristics:** Relevant heuristics adapted for each environment type (e.g., Order-Up-To, Classic Newsvendor, (s,S) for Newsvendor; Base Stock, Constant Order for multi-echelon/network).\n    *   **Stable Baselines3 Agents:** PPO, SAC, TD3, A2C, DDPG examples.\n    *   **Ray RLlib Agents:** PPO, SAC examples.\n*   **Detailed Reporting (from Benchmarks):** Benchmark examples generate:\n    *   Summary tables (CSV).\n    *   Raw results per episode (CSV).\n    *   Detailed step-by-step data (optional, JSON Lines).\n    *   Comparison plots (PNG).\n\n## Installation\n\nYou can install the core package using pip:\n\n```bash\npip install or_gym_inventory\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Gymnasium-compatible implementations of classic inventory management environments (Newsvendor, Multi-Echelon, Network) based on OR-Gym.",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/r2barati/or-gym-inventory-pkg/issues",
        "Homepage": "https://github.com/r2barati/or-gym-inventory-pkg"
    },
    "split_keywords": [
        "reinforcement learning",
        " operations research",
        " inventory management",
        " gymnasium",
        " rl"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e025691999a41a2f3d4d68570c15b5c919dd2a804fcabd15f3c19511acae032a",
                "md5": "557b8eb4c267b180e7fe676e844fe823",
                "sha256": "edb95db8c1a3f4d4bbc5fd1129e98c68ceee644ec05ec98811bc828bc29ce88b"
            },
            "downloads": -1,
            "filename": "or_gym_inventory-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "557b8eb4c267b180e7fe676e844fe823",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 27645,
            "upload_time": "2025-07-12T07:31:23",
            "upload_time_iso_8601": "2025-07-12T07:31:23.018414Z",
            "url": "https://files.pythonhosted.org/packages/e0/25/691999a41a2f3d4d68570c15b5c919dd2a804fcabd15f3c19511acae032a/or_gym_inventory-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "604420c4cf33a99008d6aa33306d1ccae4915ffe751642d4b0eac583c1181cab",
                "md5": "86168d370388155c64928095eefecc04",
                "sha256": "22ab96f8dae3248e4350545215a297026ae7cecfe1591dd52c5e5f658594716b"
            },
            "downloads": -1,
            "filename": "or_gym_inventory-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "86168d370388155c64928095eefecc04",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 26747,
            "upload_time": "2025-07-12T07:31:24",
            "upload_time_iso_8601": "2025-07-12T07:31:24.331393Z",
            "url": "https://files.pythonhosted.org/packages/60/44/20c4cf33a99008d6aa33306d1ccae4915ffe751642d4b0eac583c1181cab/or_gym_inventory-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-12 07:31:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "r2barati",
    "github_project": "or-gym-inventory-pkg",
    "github_not_found": true,
    "lcname": "or-gym-inventory"
}
        
Elapsed time: 0.84936s