ormir-xct


Nameormir-xct JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/ORMIR-XCT
SummaryScripts HR-pQCT for joint space and bone microarchitecture analysis
upload_time2024-11-26 17:17:08
maintainerNone
docs_urlNone
authorMichael T. Kuczynski
requires_pythonNone
licenseGPL-3.0
keywords medical imaging
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ORMIR_XCT

**By:** [Michael T. Kuczynski](https://www.linkedin.com/in/mkuczyns/), [Nathan J. Neeteson](https://www.linkedin.com/in/nathan-neeteson/), [Kathryn S. Stok](https://www.linkedin.com/in/kstok/), [Andrew J. Burghardt](https://www.linkedin.com/in/aburghardt/), [Michelle A. Espinosa Hernandez](https://www.linkedin.com/in/michelleaespinosah/), [Jared Vicory](https://www.kitware.com/jared-vicory/), [Justin J. Tse](https://www.linkedin.com/in/justin-j-tse/), [Pholpat Durongbhan](https://www.linkedin.com/in/pholpatd/), [Serena Bonaretti](https://sbonaretti.github.io/), [Andy Kin On Wong](https://www.linkedin.com/in/andy-kin-on-wong-76408859/), [Steven K. Boyd](https://mccaig.ucalgary.ca/boyd), [Sarah L. Manske](https://www.linkedin.com/in/sarah-manske-b5402b41/), 2023  
**Version:** 1.0

- ORMIR_XCT is a Python package for processing high resolution peripheral computed tomography (HR-pQCT) scans. 
- Development of this project began during the “Building the Jupyter Community in Musculoskeletal Imaging Research” workshop hosted by the Open and Reproducible Musculoskeletal Imaging Research (ORMIR) group.

---

## Installation
### Step 1: Install the ORMIR_XCT Anaconda Environment:
`conda env create -f environment.yml`

If using an Apple M1, M2, or M3 processor, run the following command instead:
`CONDA_SUBDIR=osx-64 conda env create -f environment.yml`

### Step 2: Activate the Anaconda Environment:
`conda activate ormir_xct`

### Step 3: Install the Package:
`pip install -e .`

### Step 4: Run Scripts:
The modules in the `ormir_xct` directory can now be run. Examples for each module are provided in the `examples` directory. 

---

## Example Jupyter Notebooks
- Example Jupyter Notebooks demonstrating the major functionality of the ORMIR_XCT package are provided in the *[examples](https://github.com/SpectraCollab/ORMIR_XCT/tree/main/examples)* directory.

---

## Ways to Contribute
### Reporting Bugs
- Bugs can be reported by creating a new GitHub issue in this repository. For each bug, please provide details on how to reproduce the bug and the specific error message (if possible).

---

### Contributing New Features
- To add a new feature, expand existing functionality, add documentation, or other contributions, please submit a new GitHub issue outlining your contribution in detail. 
- When submitting a new pull request, ensure you outline what you have changed and why it is necessary to make this change.

---

## Citation
When using the ORMIR_XCT package, please use the following citation:
- *Kuczynski et al., (2024). ORMIR_XCT: A Python package for high resolution peripheral quantitative computed tomography image processing. Journal of Open Source Software, 9(97), 6084, https://doi.org/10.21105/joss.06084*


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ORMIR-XCT",
    "name": "ormir-xct",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "medical, imaging",
    "author": "Michael T. Kuczynski",
    "author_email": "mkuczyns@ucalgary.ca",
    "download_url": "https://files.pythonhosted.org/packages/72/56/145db30f61047c3763e38cc1014793418f1076852e86892d70e5dd94f85b/ormir_xct-1.0.1.tar.gz",
    "platform": null,
    "description": "# ORMIR_XCT\n\n**By:** [Michael T. Kuczynski](https://www.linkedin.com/in/mkuczyns/), [Nathan J. Neeteson](https://www.linkedin.com/in/nathan-neeteson/), [Kathryn S. Stok](https://www.linkedin.com/in/kstok/), [Andrew J. Burghardt](https://www.linkedin.com/in/aburghardt/), [Michelle A. Espinosa Hernandez](https://www.linkedin.com/in/michelleaespinosah/), [Jared Vicory](https://www.kitware.com/jared-vicory/), [Justin J. Tse](https://www.linkedin.com/in/justin-j-tse/), [Pholpat Durongbhan](https://www.linkedin.com/in/pholpatd/), [Serena Bonaretti](https://sbonaretti.github.io/), [Andy Kin On Wong](https://www.linkedin.com/in/andy-kin-on-wong-76408859/), [Steven K. Boyd](https://mccaig.ucalgary.ca/boyd), [Sarah L. Manske](https://www.linkedin.com/in/sarah-manske-b5402b41/), 2023  \n**Version:** 1.0\n\n- ORMIR_XCT is a Python package for processing high resolution peripheral computed tomography (HR-pQCT) scans. \n- Development of this project began during the \u201cBuilding the Jupyter Community in Musculoskeletal Imaging Research\u201d workshop hosted by the Open and Reproducible Musculoskeletal Imaging Research (ORMIR) group.\n\n---\n\n## Installation\n### Step 1: Install the ORMIR_XCT Anaconda Environment:\n`conda env create -f environment.yml`\n\nIf using an Apple M1, M2, or M3 processor, run the following command instead:\n`CONDA_SUBDIR=osx-64 conda env create -f environment.yml`\n\n### Step 2: Activate the Anaconda Environment:\n`conda activate ormir_xct`\n\n### Step 3: Install the Package:\n`pip install -e .`\n\n### Step 4: Run Scripts:\nThe modules in the `ormir_xct` directory can now be run. Examples for each module are provided in the `examples` directory. \n\n---\n\n## Example Jupyter Notebooks\n- Example Jupyter Notebooks demonstrating the major functionality of the ORMIR_XCT package are provided in the *[examples](https://github.com/SpectraCollab/ORMIR_XCT/tree/main/examples)* directory.\n\n---\n\n## Ways to Contribute\n### Reporting Bugs\n- Bugs can be reported by creating a new GitHub issue in this repository. For each bug, please provide details on how to reproduce the bug and the specific error message (if possible).\n\n---\n\n### Contributing New Features\n- To add a new feature, expand existing functionality, add documentation, or other contributions, please submit a new GitHub issue outlining your contribution in detail. \n- When submitting a new pull request, ensure you outline what you have changed and why it is necessary to make this change.\n\n---\n\n## Citation\nWhen using the ORMIR_XCT package, please use the following citation:\n- *Kuczynski et al., (2024). ORMIR_XCT: A Python package for high resolution peripheral quantitative computed tomography image processing. Journal of Open Source Software, 9(97), 6084, https://doi.org/10.21105/joss.06084*\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Scripts HR-pQCT for joint space and bone microarchitecture analysis",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/ORMIR-XCT",
        "Source Code": "https://github.com/ORMIR-XCT/ORMIR_XCT"
    },
    "split_keywords": [
        "medical",
        " imaging"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e4cf07235b856e00cb1474f114270f81e5772b9cdab50557a4f49a37f25770a5",
                "md5": "013b54638e80f31b9e33dd1b8da81abf",
                "sha256": "60ad0114078d3c8e85b2fd822a19c6cc47cc23337fa7e9bc2b8e28d4f1d6470c"
            },
            "downloads": -1,
            "filename": "ormir_xct-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "013b54638e80f31b9e33dd1b8da81abf",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 56870,
            "upload_time": "2024-11-26T17:17:06",
            "upload_time_iso_8601": "2024-11-26T17:17:06.226264Z",
            "url": "https://files.pythonhosted.org/packages/e4/cf/07235b856e00cb1474f114270f81e5772b9cdab50557a4f49a37f25770a5/ormir_xct-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7256145db30f61047c3763e38cc1014793418f1076852e86892d70e5dd94f85b",
                "md5": "ecf95de31abd9811cdd79e9ed0ac73d2",
                "sha256": "25d57983b3f162336933caee3a38b079dc703dad0303fbda2205fc79430f6991"
            },
            "downloads": -1,
            "filename": "ormir_xct-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ecf95de31abd9811cdd79e9ed0ac73d2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 64166365,
            "upload_time": "2024-11-26T17:17:08",
            "upload_time_iso_8601": "2024-11-26T17:17:08.571012Z",
            "url": "https://files.pythonhosted.org/packages/72/56/145db30f61047c3763e38cc1014793418f1076852e86892d70e5dd94f85b/ormir_xct-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-26 17:17:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ORMIR-XCT",
    "github_project": "ORMIR_XCT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ormir-xct"
}
        
Elapsed time: 3.61834s