orthopy


Nameorthopy JSON
Version 0.9.12 PyPI version JSON
download
home_pageNone
SummaryOrthogonal polynomials for Python
upload_time2024-06-14 09:51:48
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://github.com/nschloe/orthopy"><img alt="orthopy" src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/orthopy-logo-with-text.png" width="30%"></a>
  <p align="center">All about orthogonal polynomials.</p>
</p>

[![PyPi Version](https://img.shields.io/pypi/v/orthopy.svg?style=flat-square)](https://pypi.org/project/orthopy)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/orthopy.svg?style=flat-square)](https://pypi.org/pypi/orthopy/)
[![GitHub stars](https://img.shields.io/github/stars/nschloe/orthopy.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/orthopy)
[![Downloads](https://pepy.tech/badge/orthopy/month?style=flat-square)](https://pepy.tech/project/orthopy)

<!--[![PyPi downloads](https://img.shields.io/pypi/dm/orthopy.svg?style=flat-square)](https://pypistats.org/packages/orthopy)-->

[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)
[![orthogonal](https://img.shields.io/badge/orthogonal-yes-ff69b4.svg?style=flat-square)](https://github.com/nschloe/orthopy)

orthopy provides various orthogonal polynomial classes for
[lines](#line-segment--1-1-with-weight-function-1-x%CE%B1-1-x%CE%B2),
[triangles](#triangle-42),
[disks](#disk-s2),
[spheres](#sphere-u2),
[n-cubes](#n-cube-cn),
[the nD space with weight function exp(-r<sup>2</sup>)](#nd-space-with-weight-function-exp-r2-enr2)
and more.
All computations are done using numerically stable recurrence schemes. Furthermore, all
functions are fully vectorized and can return results in _exact arithmetic_.

### Installation

Install orthopy [from PyPI](https://pypi.org/project/orthopy/) with

```
pip install orthopy
```

### How to get a license

Licenses for personal and academic use can be purchased
[here](https://buy.stripe.com/aEUg1H38OgDw5qMfZ3).
You'll receive a confirmation email with a license key.
Install the key with

```
plm add <your-license-key>
```

on your machine and you're good to go.

For commercial use, please contact support@mondaytech.com.

### Basic usage

The main function of all submodules is the iterator `Eval` which evaluates the series of
orthogonal polynomials with increasing degree at given points using a recurrence
relation, e.g.,

```python
import orthopy

x = 0.5

evaluator = orthopy.c1.legendre.Eval(x, "classical")
for _ in range(5):
     print(next(evaluator))
```

```python
1.0          # P_0(0.5)
0.5          # P_1(0.5)
-0.125       # P_2(0.5)
-0.4375      # P_3(0.5)
-0.2890625   # P_4(0.5)
```

Other ways of getting the first `n` items are

<!--pytest.mark.skip-->

```python
evaluator = Eval(x, "normal")
vals = [next(evaluator) for _ in range(n)]

import itertools
vals = list(itertools.islice(Eval(x, "normal"), n))
```

Instead of evaluating at only one point, you can provide any array for `x`; the
polynomials will then be evaluated for all points at once. You can also use sympy for
symbolic computation:

```python
import itertools
import orthopy
import sympy

x = sympy.Symbol("x")

evaluator = orthopy.c1.legendre.Eval(x, "classical")
for val in itertools.islice(evaluator, 5):
     print(sympy.expand(val))
```

```
1
x
3*x**2/2 - 1/2
5*x**3/2 - 3*x/2
35*x**4/8 - 15*x**2/4 + 3/8
```

All `Eval` methods have a `scaling` argument which can have three values:

- `"monic"`: The leading coefficient is 1.
- `"classical"`: The maximum value is 1 (or (n+alpha over n)).
- `"normal"`: The integral of the squared function over the domain is 1.

For univariate ("one-dimensional") integrals, every new iteration contains one function.
For bivariate ("two-dimensional") domains, every level will contain one function more
than the previous, and similarly for multivariate families. See the tree plots below.

### Line segment (-1, +1) with weight function (1-x)<sup>α</sup> (1+x)<sup>β</sup>

| <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/legendre.svg" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/chebyshev1.svg" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/chebyshev2.svg" width="100%"> |
| :---------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: |
|                                            Legendre                                             |                                            Chebyshev 1                                            |                                            Chebyshev 2                                            |

Jacobi, Gegenbauer (α=β), Chebyshev 1 (α=β=-1/2), Chebyshev 2 (α=β=1/2), Legendre
(α=β=0) polynomials.

<!--pytest.mark.skip-->

```python
import orthopy

orthopy.c1.legendre.Eval(x, "normal")
orthopy.c1.chebyshev1.Eval(x, "normal")
orthopy.c1.chebyshev2.Eval(x, "normal")
orthopy.c1.gegenbauer.Eval(x, "normal", lmbda)
orthopy.c1.jacobi.Eval(x, "normal", alpha, beta)
```

The plots above are generated with

```python
import orthopy

orthopy.c1.jacobi.show(5, "normal", 0.0, 0.0)
# plot, savefig also exist
```

Recurrence coefficients can be explicitly retrieved by

```python
import orthopy

rc = orthopy.c1.jacobi.RecurrenceCoefficients(
    "monic",  # or "classical", "normal"
    alpha=0, beta=0, symbolic=True
)
print(rc.p0)
for k in range(5):
    print(rc[k])
```

```
1
(1, 0, None)
(1, 0, 1/3)
(1, 0, 4/15)
(1, 0, 9/35)
(1, 0, 16/63)
```

### 1D half-space with weight function x<sup>α</sup> exp(-r)

<img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r.svg" width="45%">

(Generalized) Laguerre polynomials.

<!--pytest.mark.skip-->

```python
evaluator = orthopy.e1r.Eval(x, alpha=0, scaling="normal")
```

### 1D space with weight function exp(-r<sup>2</sup>)

<img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r2.svg" width="45%">

Hermite polynomials come in two standardizations:

- `"physicists"` (against the weight function `exp(-x ** 2)`
- `"probabilists"` (against the weight function `1 / sqrt(2 * pi) * exp(-x ** 2 / 2)`

<!--pytest.mark.skip-->

```python
evaluator = orthopy.e1r2.Eval(
    x,
    "probabilists",  # or "physicists"
    "normal"
)
```

#### Associated Legendre "polynomials"

<img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/associated-legendre.svg" width="45%">

Not all of those are polynomials, so they should really be called associated Legendre
_functions_. The <i>k</i>th iteration contains _2k+1_ functions, indexed from
_-k_ to _k_. (See the color grouping in the above plot.)

<!--pytest.mark.skip-->

```python
evaluator = orthopy.c1.associated_legendre.Eval(
    x, phi=None, standardization="natural", with_condon_shortley_phase=True
)
```

### Triangle (_T<sub>2</sub>_)

<img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/triangle-tree.png" width="40%">

orthopy's triangle orthogonal polynomials are evaluated in terms of [barycentric
coordinates](https://en.wikipedia.org/wiki/Barycentric_coordinate_system), so the
`X.shape[0]` has to be 3.

```python
import orthopy

bary = [0.1, 0.7, 0.2]
evaluator = orthopy.t2.Eval(bary, "normal")
```

### Disk (_S<sub>2</sub>_)

| <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-xu-tree.png" width="70%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-zernike-tree.png" width="70%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-zernike2-tree.png" width="70%"> |
| :------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------: |
|                                                 Xu                                                 |                      [Zernike](https://en.wikipedia.org/wiki/Zernike_polynomials)                       |                                                Zernike 2                                                 |

orthopy contains several families of orthogonal polynomials on the unit disk: After
[Xu](https://arxiv.org/abs/1701.02709),
[Zernike](https://en.wikipedia.org/wiki/Zernike_polynomials), and a simplified version
of Zernike polynomials.

```python
import orthopy

x = [0.1, -0.3]

evaluator = orthopy.s2.xu.Eval(x, "normal")
# evaluator = orthopy.s2.zernike.Eval(x, "normal")
# evaluator = orthopy.s2.zernike2.Eval(x, "normal")
```

### Sphere (_U<sub>3</sub>_)

<img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/sph-tree.png" width="50%">

Complex-valued _spherical harmonics,_ (black=zero, green=real positive,
pink=real negative, blue=imaginary positive, yellow=imaginary negative). The
functions in the middle are real-valued. The complex angle takes _n_ turns on
the <i>n</i>th level.

<!--pytest.mark.skip-->

```python
evaluator = orthopy.u3.EvalCartesian(
    x,
    scaling="quantum mechanic"  # or "acoustic", "geodetic", "schmidt"
)

evaluator = orthopy.u3.EvalSpherical(
    theta_phi,  # polar, azimuthal angles
    scaling="quantum mechanic"  # or "acoustic", "geodetic", "schmidt"
)
```

<!-- To generate the above plot, write the tree mesh to a file -->
<!---->
<!-- ```python -->
<!-- import orthopy -->
<!---->
<!-- orthopy.u3.write_tree("u3.vtk", 5, "quantum mechanic") -->
<!-- ``` -->
<!---->
<!-- and open it with [ParaView](https://www.paraview.org/). Select the _srgb1_ data set and -->
<!-- turn off _Map Scalars_. -->

### _n_-Cube (_C<sub>n</sub>_)

| <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/c1.svg" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/c2.png" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/c3.png" width="100%"> |
| :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: |
|                                 C<sub>1</sub> (Legendre)                                  |                                       C<sub>2</sub>                                       |                                       C<sub>3</sub>                                       |

Jacobi product polynomials.
All polynomials are normalized on the n-dimensional cube. The dimensionality is
determined by `X.shape[0]`.

<!--pytest.mark.skip-->

```python
evaluator = orthopy.cn.Eval(X, alpha=0, beta=0)
values, degrees = next(evaluator)
```

### <i>n</i>D space with weight function exp(-r<sup>2</sup>) (_E<sub>n</sub><sup>r<sup>2</sup></sup>_)

| <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r2.svg" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/e2r2.png" width="100%"> | <img src="https://raw.githubusercontent.com/sigma-py/orthopy/assets/e3r2.png" width="100%"> |
| :-----------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------: |
|                           _E<sub>1</sub><sup>r<sup>2</sup></sup>_                           |                           _E<sub>2</sub><sup>r<sup>2</sup></sup>_                           |                           _E<sub>3</sub><sup>r<sup>2</sup></sup>_                           |

Hermite product polynomials.
All polynomials are normalized over the measure. The dimensionality is determined by
`X.shape[0]`.

<!--pytest.mark.skip-->

```python
evaluator = orthopy.enr2.Eval(
    x,
    standardization="probabilists"  # or "physicists"
)
values, degrees = next(evaluator)
```

### Other tools

- Generating recurrence coefficients for 1D domains with
  [Stieltjes](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#stieltjes),
  [Golub-Welsch](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#golub-welsch),
  [Chebyshev](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#chebyshev), and
  [modified
  Chebyshev](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#modified-chebyshev).

- The the sanity of recurrence coefficients with test 3 from [Gautschi's article](https://doi.org/10.1007/BF02218441):
  computing the weighted sum of orthogonal polynomials:
  <!--pytest.mark.skip-->

  ```python
  orthopy.tools.gautschi_test_3(moments, alpha, beta)
  ```

- [Clenshaw algorithm](https://en.wikipedia.org/wiki/Clenshaw_algorithm) for
  computing the weighted sum of orthogonal polynomials:
  <!--pytest.mark.skip-->
  ```python
  vals = orthopy.c1.clenshaw(a, alpha, beta, t)
  ```

### Relevant publications

- [Robert C. Kirby, Singularity-free evaluation of collapsed-coordinate orthogonal polynomials, ACM Transactions on Mathematical Software (TOMS), Volume 37, Issue 1, January 2010](https://doi.org/10.1145/1644001.1644006)
- [Abedallah Rababah, Recurrence Relations for Orthogonal Polynomials on Triangular Domains, MDPI Mathematics 2016, 4(2)](https://doi.org/10.3390/math4020025)
- [Yuan Xu, Orthogonal polynomials of several variables, arxiv.org, January 2017](https://arxiv.org/abs/1701.02709)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "orthopy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Nico Schl\u00f6mer <nico.schloemer@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "<p align=\"center\">\n  <a href=\"https://github.com/nschloe/orthopy\"><img alt=\"orthopy\" src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/orthopy-logo-with-text.png\" width=\"30%\"></a>\n  <p align=\"center\">All about orthogonal polynomials.</p>\n</p>\n\n[![PyPi Version](https://img.shields.io/pypi/v/orthopy.svg?style=flat-square)](https://pypi.org/project/orthopy)\n[![PyPI pyversions](https://img.shields.io/pypi/pyversions/orthopy.svg?style=flat-square)](https://pypi.org/pypi/orthopy/)\n[![GitHub stars](https://img.shields.io/github/stars/nschloe/orthopy.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/orthopy)\n[![Downloads](https://pepy.tech/badge/orthopy/month?style=flat-square)](https://pepy.tech/project/orthopy)\n\n<!--[![PyPi downloads](https://img.shields.io/pypi/dm/orthopy.svg?style=flat-square)](https://pypistats.org/packages/orthopy)-->\n\n[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)\n[![orthogonal](https://img.shields.io/badge/orthogonal-yes-ff69b4.svg?style=flat-square)](https://github.com/nschloe/orthopy)\n\northopy provides various orthogonal polynomial classes for\n[lines](#line-segment--1-1-with-weight-function-1-x%CE%B1-1-x%CE%B2),\n[triangles](#triangle-42),\n[disks](#disk-s2),\n[spheres](#sphere-u2),\n[n-cubes](#n-cube-cn),\n[the nD space with weight function exp(-r<sup>2</sup>)](#nd-space-with-weight-function-exp-r2-enr2)\nand more.\nAll computations are done using numerically stable recurrence schemes. Furthermore, all\nfunctions are fully vectorized and can return results in _exact arithmetic_.\n\n### Installation\n\nInstall orthopy [from PyPI](https://pypi.org/project/orthopy/) with\n\n```\npip install orthopy\n```\n\n### How to get a license\n\nLicenses for personal and academic use can be purchased\n[here](https://buy.stripe.com/aEUg1H38OgDw5qMfZ3).\nYou'll receive a confirmation email with a license key.\nInstall the key with\n\n```\nplm add <your-license-key>\n```\n\non your machine and you're good to go.\n\nFor commercial use, please contact support@mondaytech.com.\n\n### Basic usage\n\nThe main function of all submodules is the iterator `Eval` which evaluates the series of\northogonal polynomials with increasing degree at given points using a recurrence\nrelation, e.g.,\n\n```python\nimport orthopy\n\nx = 0.5\n\nevaluator = orthopy.c1.legendre.Eval(x, \"classical\")\nfor _ in range(5):\n     print(next(evaluator))\n```\n\n```python\n1.0          # P_0(0.5)\n0.5          # P_1(0.5)\n-0.125       # P_2(0.5)\n-0.4375      # P_3(0.5)\n-0.2890625   # P_4(0.5)\n```\n\nOther ways of getting the first `n` items are\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = Eval(x, \"normal\")\nvals = [next(evaluator) for _ in range(n)]\n\nimport itertools\nvals = list(itertools.islice(Eval(x, \"normal\"), n))\n```\n\nInstead of evaluating at only one point, you can provide any array for `x`; the\npolynomials will then be evaluated for all points at once. You can also use sympy for\nsymbolic computation:\n\n```python\nimport itertools\nimport orthopy\nimport sympy\n\nx = sympy.Symbol(\"x\")\n\nevaluator = orthopy.c1.legendre.Eval(x, \"classical\")\nfor val in itertools.islice(evaluator, 5):\n     print(sympy.expand(val))\n```\n\n```\n1\nx\n3*x**2/2 - 1/2\n5*x**3/2 - 3*x/2\n35*x**4/8 - 15*x**2/4 + 3/8\n```\n\nAll `Eval` methods have a `scaling` argument which can have three values:\n\n- `\"monic\"`: The leading coefficient is 1.\n- `\"classical\"`: The maximum value is 1 (or (n+alpha over n)).\n- `\"normal\"`: The integral of the squared function over the domain is 1.\n\nFor univariate (\"one-dimensional\") integrals, every new iteration contains one function.\nFor bivariate (\"two-dimensional\") domains, every level will contain one function more\nthan the previous, and similarly for multivariate families. See the tree plots below.\n\n### Line segment (-1, +1) with weight function (1-x)<sup>\u03b1</sup> (1+x)<sup>\u03b2</sup>\n\n| <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/legendre.svg\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/chebyshev1.svg\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/chebyshev2.svg\" width=\"100%\"> |\n| :---------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: |\n|                                            Legendre                                             |                                            Chebyshev 1                                            |                                            Chebyshev 2                                            |\n\nJacobi, Gegenbauer (\u03b1=\u03b2), Chebyshev 1 (\u03b1=\u03b2=-1/2), Chebyshev 2 (\u03b1=\u03b2=1/2), Legendre\n(\u03b1=\u03b2=0) polynomials.\n\n<!--pytest.mark.skip-->\n\n```python\nimport orthopy\n\northopy.c1.legendre.Eval(x, \"normal\")\northopy.c1.chebyshev1.Eval(x, \"normal\")\northopy.c1.chebyshev2.Eval(x, \"normal\")\northopy.c1.gegenbauer.Eval(x, \"normal\", lmbda)\northopy.c1.jacobi.Eval(x, \"normal\", alpha, beta)\n```\n\nThe plots above are generated with\n\n```python\nimport orthopy\n\northopy.c1.jacobi.show(5, \"normal\", 0.0, 0.0)\n# plot, savefig also exist\n```\n\nRecurrence coefficients can be explicitly retrieved by\n\n```python\nimport orthopy\n\nrc = orthopy.c1.jacobi.RecurrenceCoefficients(\n    \"monic\",  # or \"classical\", \"normal\"\n    alpha=0, beta=0, symbolic=True\n)\nprint(rc.p0)\nfor k in range(5):\n    print(rc[k])\n```\n\n```\n1\n(1, 0, None)\n(1, 0, 1/3)\n(1, 0, 4/15)\n(1, 0, 9/35)\n(1, 0, 16/63)\n```\n\n### 1D half-space with weight function x<sup>\u03b1</sup> exp(-r)\n\n<img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r.svg\" width=\"45%\">\n\n(Generalized) Laguerre polynomials.\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.e1r.Eval(x, alpha=0, scaling=\"normal\")\n```\n\n### 1D space with weight function exp(-r<sup>2</sup>)\n\n<img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r2.svg\" width=\"45%\">\n\nHermite polynomials come in two standardizations:\n\n- `\"physicists\"` (against the weight function `exp(-x ** 2)`\n- `\"probabilists\"` (against the weight function `1 / sqrt(2 * pi) * exp(-x ** 2 / 2)`\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.e1r2.Eval(\n    x,\n    \"probabilists\",  # or \"physicists\"\n    \"normal\"\n)\n```\n\n#### Associated Legendre \"polynomials\"\n\n<img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/associated-legendre.svg\" width=\"45%\">\n\nNot all of those are polynomials, so they should really be called associated Legendre\n_functions_. The <i>k</i>th iteration contains _2k+1_ functions, indexed from\n_-k_ to _k_. (See the color grouping in the above plot.)\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.c1.associated_legendre.Eval(\n    x, phi=None, standardization=\"natural\", with_condon_shortley_phase=True\n)\n```\n\n### Triangle (_T<sub>2</sub>_)\n\n<img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/triangle-tree.png\" width=\"40%\">\n\northopy's triangle orthogonal polynomials are evaluated in terms of [barycentric\ncoordinates](https://en.wikipedia.org/wiki/Barycentric_coordinate_system), so the\n`X.shape[0]` has to be 3.\n\n```python\nimport orthopy\n\nbary = [0.1, 0.7, 0.2]\nevaluator = orthopy.t2.Eval(bary, \"normal\")\n```\n\n### Disk (_S<sub>2</sub>_)\n\n| <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-xu-tree.png\" width=\"70%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-zernike-tree.png\" width=\"70%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/disk-zernike2-tree.png\" width=\"70%\"> |\n| :------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------: |\n|                                                 Xu                                                 |                      [Zernike](https://en.wikipedia.org/wiki/Zernike_polynomials)                       |                                                Zernike 2                                                 |\n\northopy contains several families of orthogonal polynomials on the unit disk: After\n[Xu](https://arxiv.org/abs/1701.02709),\n[Zernike](https://en.wikipedia.org/wiki/Zernike_polynomials), and a simplified version\nof Zernike polynomials.\n\n```python\nimport orthopy\n\nx = [0.1, -0.3]\n\nevaluator = orthopy.s2.xu.Eval(x, \"normal\")\n# evaluator = orthopy.s2.zernike.Eval(x, \"normal\")\n# evaluator = orthopy.s2.zernike2.Eval(x, \"normal\")\n```\n\n### Sphere (_U<sub>3</sub>_)\n\n<img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/sph-tree.png\" width=\"50%\">\n\nComplex-valued _spherical harmonics,_ (black=zero, green=real positive,\npink=real negative, blue=imaginary positive, yellow=imaginary negative). The\nfunctions in the middle are real-valued. The complex angle takes _n_ turns on\nthe <i>n</i>th level.\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.u3.EvalCartesian(\n    x,\n    scaling=\"quantum mechanic\"  # or \"acoustic\", \"geodetic\", \"schmidt\"\n)\n\nevaluator = orthopy.u3.EvalSpherical(\n    theta_phi,  # polar, azimuthal angles\n    scaling=\"quantum mechanic\"  # or \"acoustic\", \"geodetic\", \"schmidt\"\n)\n```\n\n<!-- To generate the above plot, write the tree mesh to a file -->\n<!---->\n<!-- ```python -->\n<!-- import orthopy -->\n<!---->\n<!-- orthopy.u3.write_tree(\"u3.vtk\", 5, \"quantum mechanic\") -->\n<!-- ``` -->\n<!---->\n<!-- and open it with [ParaView](https://www.paraview.org/). Select the _srgb1_ data set and -->\n<!-- turn off _Map Scalars_. -->\n\n### _n_-Cube (_C<sub>n</sub>_)\n\n| <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/c1.svg\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/c2.png\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/c3.png\" width=\"100%\"> |\n| :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: |\n|                                 C<sub>1</sub> (Legendre)                                  |                                       C<sub>2</sub>                                       |                                       C<sub>3</sub>                                       |\n\nJacobi product polynomials.\nAll polynomials are normalized on the n-dimensional cube. The dimensionality is\ndetermined by `X.shape[0]`.\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.cn.Eval(X, alpha=0, beta=0)\nvalues, degrees = next(evaluator)\n```\n\n### <i>n</i>D space with weight function exp(-r<sup>2</sup>) (_E<sub>n</sub><sup>r<sup>2</sup></sup>_)\n\n| <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/e1r2.svg\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/e2r2.png\" width=\"100%\"> | <img src=\"https://raw.githubusercontent.com/sigma-py/orthopy/assets/e3r2.png\" width=\"100%\"> |\n| :-----------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------: |\n|                           _E<sub>1</sub><sup>r<sup>2</sup></sup>_                           |                           _E<sub>2</sub><sup>r<sup>2</sup></sup>_                           |                           _E<sub>3</sub><sup>r<sup>2</sup></sup>_                           |\n\nHermite product polynomials.\nAll polynomials are normalized over the measure. The dimensionality is determined by\n`X.shape[0]`.\n\n<!--pytest.mark.skip-->\n\n```python\nevaluator = orthopy.enr2.Eval(\n    x,\n    standardization=\"probabilists\"  # or \"physicists\"\n)\nvalues, degrees = next(evaluator)\n```\n\n### Other tools\n\n- Generating recurrence coefficients for 1D domains with\n  [Stieltjes](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#stieltjes),\n  [Golub-Welsch](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#golub-welsch),\n  [Chebyshev](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#chebyshev), and\n  [modified\n  Chebyshev](https://github.com/nschloe/orthopy/wiki/Generating-1D-recurrence-coefficients-for-a-given-weight#modified-chebyshev).\n\n- The the sanity of recurrence coefficients with test 3 from [Gautschi's article](https://doi.org/10.1007/BF02218441):\n  computing the weighted sum of orthogonal polynomials:\n  <!--pytest.mark.skip-->\n\n  ```python\n  orthopy.tools.gautschi_test_3(moments, alpha, beta)\n  ```\n\n- [Clenshaw algorithm](https://en.wikipedia.org/wiki/Clenshaw_algorithm) for\n  computing the weighted sum of orthogonal polynomials:\n  <!--pytest.mark.skip-->\n  ```python\n  vals = orthopy.c1.clenshaw(a, alpha, beta, t)\n  ```\n\n### Relevant publications\n\n- [Robert C. Kirby, Singularity-free evaluation of collapsed-coordinate orthogonal polynomials, ACM Transactions on Mathematical Software (TOMS), Volume 37, Issue 1, January 2010](https://doi.org/10.1145/1644001.1644006)\n- [Abedallah Rababah, Recurrence Relations for Orthogonal Polynomials on Triangular Domains, MDPI Mathematics 2016, 4(2)](https://doi.org/10.3390/math4020025)\n- [Yuan Xu, Orthogonal polynomials of several variables, arxiv.org, January 2017](https://arxiv.org/abs/1701.02709)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Orthogonal polynomials for Python",
    "version": "0.9.12",
    "project_urls": {
        "Homepage": "https://github.com/sigma-py/orthopy",
        "Issues": "https://github.com/sigma-py/orthopy/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "acaa9c3c82706c1da771cd6c227f2f345f163f2a0191376a39fe2203be2bc80b",
                "md5": "adae87bb6228a2fb25cffbec3e39c9df",
                "sha256": "4b4b836b098638ec25cc5cf76cd3509b0c034fb00466343439590372641f8918"
            },
            "downloads": -1,
            "filename": "orthopy-0.9.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "adae87bb6228a2fb25cffbec3e39c9df",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 76997,
            "upload_time": "2024-06-14T09:51:48",
            "upload_time_iso_8601": "2024-06-14T09:51:48.121916Z",
            "url": "https://files.pythonhosted.org/packages/ac/aa/9c3c82706c1da771cd6c227f2f345f163f2a0191376a39fe2203be2bc80b/orthopy-0.9.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-14 09:51:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sigma-py",
    "github_project": "orthopy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "orthopy"
}
        
Elapsed time: 0.25784s