pacopy


Namepacopy JSON
Version 0.2.9 PyPI version JSON
download
home_pageNone
SummaryNumerical continuation in Python
upload_time2024-12-28 16:35:15
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords mathematics numerical continuation numerical methods differential equations pde
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pacopy

[![PyPi Version](https://img.shields.io/pypi/v/pacopy.svg?style=flat-square)](https://pypi.org/project/pacopy/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pacopy.svg?style=flat-square)](https://pypi.org/project/pacopy/)
[![GitHub stars](https://img.shields.io/github/stars/nschloe/pacopy.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/pacopy)
[![PyPi downloads](https://img.shields.io/pypi/dm/pacopy.svg?style=flat-square)](https://pypistats.org/packages/pacopy)

[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)

pacopy provides various algorithms of [numerical parameter
continuation](https://en.wikipedia.org/wiki/Numerical_continuation) for ODEs and PDEs in
Python.

pacopy is backend-agnostic, so it doesn't matter if your problem is formulated with
[NumPy](https://numpy.org/), [SciPy](https://scipy.org/),
[FEniCS](https://fenicsproject.org/), [pyfvm](https://github.com/nschloe/pyfvm), or any
other Python package. The only thing the user must provide is a class with some simple
methods, e.g., a function evaluation `f(u, lmbda)`, a Jacobian a solver
`jacobian_solver(u, lmbda, rhs)` etc.

Install with

```
pip install pacopy
```

To get started, take a look at the examples below.

Some pacopy documentation is available
[here](https://pacopy.readthedocs.io/en/latest/?badge=latest).

### Examples

#### Basic scalar example

<img src="https://nschloe.github.io/pacopy/simple.svg" width="30%">

Let's start off with a problem where the solution space is scalar. We try to
solve `sin(x) - lambda` for different values of `lambda`, starting at 0.

```python
import math
import matplotlib.pyplot as plt
import pacopy


class SimpleScalarProblem:
    def inner(self, a, b):
        """The inner product in the problem domain. For scalars, this is just a
        multiplication.
        """
        return a * b

    def norm2_r(self, a):
        """The norm in the range space; used to determine if a solution has been found."""
        return a**2

    def f(self, u, lmbda):
        """The evaluation of the function to be solved"""
        return math.sin(u) - lmbda

    def df_dlmbda(self, u, lmbda):
        """The function's derivative with respect to the parameter. Used in Euler-Newton
        continuation.
        """
        return -1.0

    def jacobian_solver(self, u, lmbda, rhs):
        """A solver for the Jacobian problem. For scalars, this is just a division."""
        return rhs / math.cos(u)


problem = SimpleScalarProblem()

lmbda_list = []
values_list = []


def callback(k, lmbda, sol):
    # Use the callback for plotting, writing data to files etc.
    lmbda_list.append(lmbda)
    values_list.append(sol)


pacopy.euler_newton(
    problem,
    u0=0.0,
    lmbda0=0.0,
    callback=callback,
    max_steps=20,
    newton_tol=1.0e-10,
    verbose=False,
)

# plot solution
plt.plot(values_list, lmbda_list, ".-")
plt.xlabel("$u_1$")
plt.ylabel("$\\lambda$")
plt.show()
```

#### Simple 2D problem

<img src="https://nschloe.github.io/pacopy/simple2d.svg" width="30%">

A similarly simple example with two unknowns and a parameter. The inner product and
Jacobian solver are getting more interesting.

```python
import matplotlib.pyplot as plt
import numpy as np
import pacopy
import scipy
from mpl_toolkits.mplot3d import Axes3D


class SimpleProblem2D:
    def inner(self, a, b):
        return np.dot(a, b)

    def norm2_r(self, a):
        return np.dot(a, a)

    def f(self, u, lmbda):
        return np.array(
            [
                np.sin(u[0]) - lmbda - u[1] ** 2,
                np.cos(u[1]) * u[1] - lmbda,
            ]
        )

    def df_dlmbda(self, u, lmbda):
        return -np.ones_like(u)

    def jacobian_solver(self, u, lmbda, rhs):
        A = np.array(
            [
                [np.cos(u[0]), -2 * u[1]],
                [0.0, np.cos(u[1]) - np.sin(u[1]) * u[1]],
            ]
        )
        return np.linalg.solve(A, rhs)


problem = SimpleProblem2D()
# Initial guess and initial parameter value
u0 = np.zeros(2)
lmbda0 = 0.0

# Init lists
lmbda_list = []
values_list = []


def callback(k, lmbda, sol):
    lmbda_list.append(lmbda)
    values_list.append(sol)


pacopy.euler_newton(problem, u0, lmbda0, callback, max_steps=50, newton_tol=1.0e-10)

# plot solution
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot(*np.array(values_list).T, lmbda_list, ".-")
ax.set_xlabel("$u_1$")
ax.set_ylabel("$u_2$")
ax.set_zlabel("$\\lambda$")
# plt.show()
plt.savefig("simple2d.svg", transparent=True, bbox_inches="tight")
plt.close()
```

#### Bratu

<img src="https://nschloe.github.io/pacopy/bratu1d.png" width="30%">

Let's deal with an actual PDE, the classical [Bratu
problem](https://en.wikipedia.org/wiki/Liouville%E2%80%93Bratu%E2%80%93Gelfand_equation)
in 1D with Dirichlet boundary conditions. Now, the solution space isn't scalar, but a
vector of length `n` (the values of the solution at given points on the 1D interval).
We now need numpy and scipy, the inner product and Jacobian solver are more complicated.

```python
import matplotlib.pyplot as plt
import numpy as np
import pacopy
import scipy.sparse
import scipy.sparse.linalg


# This is the classical finite-difference approximation
class Bratu1d:
    def __init__(self, n):
        self.n = n
        h = 1.0 / (self.n - 1)

        self.H = np.full(self.n, h)
        self.H[0] = h / 2
        self.H[-1] = h / 2

        self.A = (
            scipy.sparse.diags([-1.0, 2.0, -1.0], [-1, 0, 1], shape=(self.n, self.n))
            / h**2
        )

    def inner(self, a, b):
        """The inner product of the problem. Can be np.dot(a, b), but factoring in
        the mesh width stays true to the PDE.
        """
        return np.dot(a, self.H * b)

    def norm2_r(self, a):
        """The norm in the range space; used to determine if a solution has been found."""
        return np.dot(a, a)

    def f(self, u, lmbda):
        """The evaluation of the function to be solved"""
        out = self.A.dot(u) - lmbda * np.exp(u)
        out[0] = u[0]
        out[-1] = u[-1]
        return out

    def df_dlmbda(self, u, lmbda):
        """The function's derivative with respect to the parameter. Used in Euler-Newton
        continuation.
        """
        out = -np.exp(u)
        out[0] = 0.0
        out[-1] = 0.0
        return out

    def jacobian_solver(self, u, lmbda, rhs):
        """A solver for the Jacobian problem."""
        M = self.A.copy()
        d = M.diagonal().copy()
        d -= lmbda * np.exp(u)
        M.setdiag(d)
        # Dirichlet conditions
        M.data[0][self.n - 2] = 0.0
        M.data[1][0] = 1.0
        M.data[1][self.n - 1] = 1.0
        M.data[2][1] = 0.0
        return scipy.sparse.linalg.spsolve(M.tocsr(), rhs)


problem = Bratu1d(51)
# Initial guess and parameter value
u0 = np.zeros(problem.n)
lmbda0 = 0.0

lmbda_list = []
values_list = []


def callback(k, lmbda, sol):
    # Use the callback for plotting, writing data to files etc.
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.set_xlabel("$\\lambda$")
    ax1.set_ylabel("$||u||_2$")
    ax1.grid()

    lmbda_list.append(lmbda)
    # use the norm of the currentsolution for plotting on the y-axis
    values_list.append(np.sqrt(problem.inner(sol, sol)))

    ax1.plot(lmbda_list, values_list, "-x", color="C0")
    ax1.set_xlim(0.0, 4.0)
    ax1.set_ylim(0.0, 6.0)
    plt.close()


# Natural parameter continuation
# pacopy.natural(problem, u0, lmbda0, callback, max_steps=100)

pacopy.euler_newton(
    problem, u0, lmbda0, callback, max_steps=500, max_num_retries=10, newton_tol=1.0e-10
)
```

#### Ginzburg–Landau

https://user-images.githubusercontent.com/181628/146639709-90b6e6aa-48ba-418d-9aa4-ec5754f95b93.mp4

The [Ginzburg-Landau
equations](https://en.wikipedia.org/wiki/Ginzburg%E2%80%93Landau_theory) model
the behavior of extreme type-II superconductors under a magnetic field. The
above example (to be found in full detail
[here](tests/test_ginzburg_landau.py)) shows parameter continuation in the
strength of the magnetic field. The plot on the right-hand side shows the
complex-valued solution using [cplot](https://github.com/nschloe/cplot).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pacopy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "mathematics, numerical continuation, numerical methods, differential equations, pde",
    "author": null,
    "author_email": "Nico Schl\u00f6mer <nico.schloemer@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "# pacopy\n\n[![PyPi Version](https://img.shields.io/pypi/v/pacopy.svg?style=flat-square)](https://pypi.org/project/pacopy/)\n[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pacopy.svg?style=flat-square)](https://pypi.org/project/pacopy/)\n[![GitHub stars](https://img.shields.io/github/stars/nschloe/pacopy.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/pacopy)\n[![PyPi downloads](https://img.shields.io/pypi/dm/pacopy.svg?style=flat-square)](https://pypistats.org/packages/pacopy)\n\n[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)\n\npacopy provides various algorithms of [numerical parameter\ncontinuation](https://en.wikipedia.org/wiki/Numerical_continuation) for ODEs and PDEs in\nPython.\n\npacopy is backend-agnostic, so it doesn't matter if your problem is formulated with\n[NumPy](https://numpy.org/), [SciPy](https://scipy.org/),\n[FEniCS](https://fenicsproject.org/), [pyfvm](https://github.com/nschloe/pyfvm), or any\nother Python package. The only thing the user must provide is a class with some simple\nmethods, e.g., a function evaluation `f(u, lmbda)`, a Jacobian a solver\n`jacobian_solver(u, lmbda, rhs)` etc.\n\nInstall with\n\n```\npip install pacopy\n```\n\nTo get started, take a look at the examples below.\n\nSome pacopy documentation is available\n[here](https://pacopy.readthedocs.io/en/latest/?badge=latest).\n\n### Examples\n\n#### Basic scalar example\n\n<img src=\"https://nschloe.github.io/pacopy/simple.svg\" width=\"30%\">\n\nLet's start off with a problem where the solution space is scalar. We try to\nsolve `sin(x) - lambda` for different values of `lambda`, starting at 0.\n\n```python\nimport math\nimport matplotlib.pyplot as plt\nimport pacopy\n\n\nclass SimpleScalarProblem:\n    def inner(self, a, b):\n        \"\"\"The inner product in the problem domain. For scalars, this is just a\n        multiplication.\n        \"\"\"\n        return a * b\n\n    def norm2_r(self, a):\n        \"\"\"The norm in the range space; used to determine if a solution has been found.\"\"\"\n        return a**2\n\n    def f(self, u, lmbda):\n        \"\"\"The evaluation of the function to be solved\"\"\"\n        return math.sin(u) - lmbda\n\n    def df_dlmbda(self, u, lmbda):\n        \"\"\"The function's derivative with respect to the parameter. Used in Euler-Newton\n        continuation.\n        \"\"\"\n        return -1.0\n\n    def jacobian_solver(self, u, lmbda, rhs):\n        \"\"\"A solver for the Jacobian problem. For scalars, this is just a division.\"\"\"\n        return rhs / math.cos(u)\n\n\nproblem = SimpleScalarProblem()\n\nlmbda_list = []\nvalues_list = []\n\n\ndef callback(k, lmbda, sol):\n    # Use the callback for plotting, writing data to files etc.\n    lmbda_list.append(lmbda)\n    values_list.append(sol)\n\n\npacopy.euler_newton(\n    problem,\n    u0=0.0,\n    lmbda0=0.0,\n    callback=callback,\n    max_steps=20,\n    newton_tol=1.0e-10,\n    verbose=False,\n)\n\n# plot solution\nplt.plot(values_list, lmbda_list, \".-\")\nplt.xlabel(\"$u_1$\")\nplt.ylabel(\"$\\\\lambda$\")\nplt.show()\n```\n\n#### Simple 2D problem\n\n<img src=\"https://nschloe.github.io/pacopy/simple2d.svg\" width=\"30%\">\n\nA similarly simple example with two unknowns and a parameter. The inner product and\nJacobian solver are getting more interesting.\n\n```python\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pacopy\nimport scipy\nfrom mpl_toolkits.mplot3d import Axes3D\n\n\nclass SimpleProblem2D:\n    def inner(self, a, b):\n        return np.dot(a, b)\n\n    def norm2_r(self, a):\n        return np.dot(a, a)\n\n    def f(self, u, lmbda):\n        return np.array(\n            [\n                np.sin(u[0]) - lmbda - u[1] ** 2,\n                np.cos(u[1]) * u[1] - lmbda,\n            ]\n        )\n\n    def df_dlmbda(self, u, lmbda):\n        return -np.ones_like(u)\n\n    def jacobian_solver(self, u, lmbda, rhs):\n        A = np.array(\n            [\n                [np.cos(u[0]), -2 * u[1]],\n                [0.0, np.cos(u[1]) - np.sin(u[1]) * u[1]],\n            ]\n        )\n        return np.linalg.solve(A, rhs)\n\n\nproblem = SimpleProblem2D()\n# Initial guess and initial parameter value\nu0 = np.zeros(2)\nlmbda0 = 0.0\n\n# Init lists\nlmbda_list = []\nvalues_list = []\n\n\ndef callback(k, lmbda, sol):\n    lmbda_list.append(lmbda)\n    values_list.append(sol)\n\n\npacopy.euler_newton(problem, u0, lmbda0, callback, max_steps=50, newton_tol=1.0e-10)\n\n# plot solution\nfig = plt.figure()\nax = fig.add_subplot(111, projection=\"3d\")\nax.plot(*np.array(values_list).T, lmbda_list, \".-\")\nax.set_xlabel(\"$u_1$\")\nax.set_ylabel(\"$u_2$\")\nax.set_zlabel(\"$\\\\lambda$\")\n# plt.show()\nplt.savefig(\"simple2d.svg\", transparent=True, bbox_inches=\"tight\")\nplt.close()\n```\n\n#### Bratu\n\n<img src=\"https://nschloe.github.io/pacopy/bratu1d.png\" width=\"30%\">\n\nLet's deal with an actual PDE, the classical [Bratu\nproblem](https://en.wikipedia.org/wiki/Liouville%E2%80%93Bratu%E2%80%93Gelfand_equation)\nin 1D with Dirichlet boundary conditions. Now, the solution space isn't scalar, but a\nvector of length `n` (the values of the solution at given points on the 1D interval).\nWe now need numpy and scipy, the inner product and Jacobian solver are more complicated.\n\n```python\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pacopy\nimport scipy.sparse\nimport scipy.sparse.linalg\n\n\n# This is the classical finite-difference approximation\nclass Bratu1d:\n    def __init__(self, n):\n        self.n = n\n        h = 1.0 / (self.n - 1)\n\n        self.H = np.full(self.n, h)\n        self.H[0] = h / 2\n        self.H[-1] = h / 2\n\n        self.A = (\n            scipy.sparse.diags([-1.0, 2.0, -1.0], [-1, 0, 1], shape=(self.n, self.n))\n            / h**2\n        )\n\n    def inner(self, a, b):\n        \"\"\"The inner product of the problem. Can be np.dot(a, b), but factoring in\n        the mesh width stays true to the PDE.\n        \"\"\"\n        return np.dot(a, self.H * b)\n\n    def norm2_r(self, a):\n        \"\"\"The norm in the range space; used to determine if a solution has been found.\"\"\"\n        return np.dot(a, a)\n\n    def f(self, u, lmbda):\n        \"\"\"The evaluation of the function to be solved\"\"\"\n        out = self.A.dot(u) - lmbda * np.exp(u)\n        out[0] = u[0]\n        out[-1] = u[-1]\n        return out\n\n    def df_dlmbda(self, u, lmbda):\n        \"\"\"The function's derivative with respect to the parameter. Used in Euler-Newton\n        continuation.\n        \"\"\"\n        out = -np.exp(u)\n        out[0] = 0.0\n        out[-1] = 0.0\n        return out\n\n    def jacobian_solver(self, u, lmbda, rhs):\n        \"\"\"A solver for the Jacobian problem.\"\"\"\n        M = self.A.copy()\n        d = M.diagonal().copy()\n        d -= lmbda * np.exp(u)\n        M.setdiag(d)\n        # Dirichlet conditions\n        M.data[0][self.n - 2] = 0.0\n        M.data[1][0] = 1.0\n        M.data[1][self.n - 1] = 1.0\n        M.data[2][1] = 0.0\n        return scipy.sparse.linalg.spsolve(M.tocsr(), rhs)\n\n\nproblem = Bratu1d(51)\n# Initial guess and parameter value\nu0 = np.zeros(problem.n)\nlmbda0 = 0.0\n\nlmbda_list = []\nvalues_list = []\n\n\ndef callback(k, lmbda, sol):\n    # Use the callback for plotting, writing data to files etc.\n    fig = plt.figure()\n    ax1 = fig.add_subplot(111)\n    ax1.set_xlabel(\"$\\\\lambda$\")\n    ax1.set_ylabel(\"$||u||_2$\")\n    ax1.grid()\n\n    lmbda_list.append(lmbda)\n    # use the norm of the currentsolution for plotting on the y-axis\n    values_list.append(np.sqrt(problem.inner(sol, sol)))\n\n    ax1.plot(lmbda_list, values_list, \"-x\", color=\"C0\")\n    ax1.set_xlim(0.0, 4.0)\n    ax1.set_ylim(0.0, 6.0)\n    plt.close()\n\n\n# Natural parameter continuation\n# pacopy.natural(problem, u0, lmbda0, callback, max_steps=100)\n\npacopy.euler_newton(\n    problem, u0, lmbda0, callback, max_steps=500, max_num_retries=10, newton_tol=1.0e-10\n)\n```\n\n#### Ginzburg\u2013Landau\n\nhttps://user-images.githubusercontent.com/181628/146639709-90b6e6aa-48ba-418d-9aa4-ec5754f95b93.mp4\n\nThe [Ginzburg-Landau\nequations](https://en.wikipedia.org/wiki/Ginzburg%E2%80%93Landau_theory) model\nthe behavior of extreme type-II superconductors under a magnetic field. The\nabove example (to be found in full detail\n[here](tests/test_ginzburg_landau.py)) shows parameter continuation in the\nstrength of the magnetic field. The plot on the right-hand side shows the\ncomplex-valued solution using [cplot](https://github.com/nschloe/cplot).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Numerical continuation in Python",
    "version": "0.2.9",
    "project_urls": {
        "Homepage": "https://github.com/sigma-py/pacopy",
        "Issues": "https://github.com/sigma-py/pacopy/issues"
    },
    "split_keywords": [
        "mathematics",
        " numerical continuation",
        " numerical methods",
        " differential equations",
        " pde"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1837a4ac7122410daed69a937c588813817b69bc97b3183e8e1be4846dd85fdc",
                "md5": "262fcae3cfd6dba3d7ed5eff1fcc3c44",
                "sha256": "c232b54ac828a2aff4c0e1ab01bf5fd67a6529ba6683802c64e9d6c286398544"
            },
            "downloads": -1,
            "filename": "pacopy-0.2.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "262fcae3cfd6dba3d7ed5eff1fcc3c44",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 22507,
            "upload_time": "2024-12-28T16:35:15",
            "upload_time_iso_8601": "2024-12-28T16:35:15.945993Z",
            "url": "https://files.pythonhosted.org/packages/18/37/a4ac7122410daed69a937c588813817b69bc97b3183e8e1be4846dd85fdc/pacopy-0.2.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-28 16:35:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sigma-py",
    "github_project": "pacopy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pacopy"
}
        
Elapsed time: 2.17310s