pactools


Namepactools JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttp://github.com/pactools/pactools
SummaryEstimation of phase-amplitude coupling (PAC) in neural time series, including with driven auto-regressive (DAR) models.
upload_time2020-11-03 18:43:38
maintainerTom Dupre la Tour
docs_urlNone
author
requires_python
licenseBSD (3-clause)
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            =============================
Getting Started with pactools
=============================

.. image:: https://travis-ci.org/pactools/pactools.svg?branch=master
    :target: https://travis-ci.org/pactools/pactools
    :alt: Build Status

.. image:: https://codecov.io/gh/pactools/pactools/branch/master/graph/badge.svg
    :target: https://codecov.io/gh/pactools/pactools
    :alt: Test coverage

.. image:: https://img.shields.io/badge/python-2.7-blue.svg
    :target: https://github.com/pactools/pactools
    :alt: Python27

.. image:: https://img.shields.io/badge/python-3.6-blue.svg
    :target: https://github.com/pactools/pactools
    :alt: Python36

This package provides tools to estimate **phase-amplitude coupling (PAC)**
in neural time series.

In particular, it implements the **driven auto-regressive (DAR)**
models presented in the reference below [`Dupre la Tour et al. 2017`_].

Read more in the `documentation <https://pactools.github.io>`_.

Installation
============

To install ``pactools``, use one of the following two commands:

- Latest stable version::

    pip install pactools

- Development version::

    pip install git+https://github.com/pactools/pactools.git#egg=pactools

To upgrade, use the ``--upgrade`` flag provided by ``pip``.

To check if everything worked fine, you can do::

	python -c 'import pactools'

and it should not give any error messages.

Phase-amplitude coupling (PAC)
==============================
Among the different classes of cross-frequency couplings,
phase-amplitude coupling (PAC) - i.e. high frequency activity time-locked
to a specific phase of slow frequency oscillations - is by far the most
acknowledged.
PAC is typically represented with a comodulogram, which shows the strenght of
the coupling over a grid of frequencies.
Comodulograms can be computed in `pactools` with more
than 10 different methods.

Driven auto-regressive (DAR) models
===================================
One of the method is based on driven auto-regressive (DAR) models.
As this method models the entire spectrum simultaneously, it avoids the
pitfalls related to incorrect filtering or the use of the Hilbert transform
on wide-band signals. As the model is probabilistic, it also provides a
score of the model **goodness of fit** via the likelihood, enabling easy
and legitimate model selection and parameter comparison;
this data-driven feature is unique to such model-based approach.

We recommend using DAR models to estimate PAC in neural time-series.
More detail in [`Dupre la Tour et al. 2017`_].

Acknowledgment
==============

This work was supported by the ERC Starting Grant SLAB ERC-YStG-676943 to
Alexandre Gramfort, the ERC Starting Grant MindTime ERC-YStG-263584 to Virginie
van Wassenhove, the ANR-16-CE37-0004-04 AutoTime to Valerie Doyere and Virginie
van Wassenhove, and the Paris-Saclay IDEX NoTime to Valerie Doyere, Alexandre
Gramfort and Virginie van Wassenhove,

Cite this work
==============

If you use this code in your project, please cite
[`Dupre la Tour et al. 2017`_]:


.. code-block::

    @article{duprelatour2017nonlinear,
        author = {Dupr{\'e} la Tour, Tom and Tallot, Lucille and Grabot, Laetitia and Doy{\`e}re, Val{\'e}rie and van Wassenhove, Virginie and Grenier, Yves and Gramfort, Alexandre},
        journal = {PLOS Computational Biology},
        publisher = {Public Library of Science},
        title = {Non-linear auto-regressive models for cross-frequency coupling in neural time series},
        year = {2017},
        month = {12},
        volume = {13},
        url = {https://doi.org/10.1371/journal.pcbi.1005893},
        pages = {1-32},
        number = {12},
        doi = {10.1371/journal.pcbi.1005893}
    }


.. _Dupre la Tour et al. 2017: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005893



            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/pactools/pactools",
    "name": "pactools",
    "maintainer": "Tom Dupre la Tour",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "tom.dupre-la-tour@m4x.org",
    "keywords": "",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/58/b3/20e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a/pactools-0.3.1.tar.gz",
    "platform": "",
    "description": "=============================\nGetting Started with pactools\n=============================\n\n.. image:: https://travis-ci.org/pactools/pactools.svg?branch=master\n    :target: https://travis-ci.org/pactools/pactools\n    :alt: Build Status\n\n.. image:: https://codecov.io/gh/pactools/pactools/branch/master/graph/badge.svg\n    :target: https://codecov.io/gh/pactools/pactools\n    :alt: Test coverage\n\n.. image:: https://img.shields.io/badge/python-2.7-blue.svg\n    :target: https://github.com/pactools/pactools\n    :alt: Python27\n\n.. image:: https://img.shields.io/badge/python-3.6-blue.svg\n    :target: https://github.com/pactools/pactools\n    :alt: Python36\n\nThis package provides tools to estimate **phase-amplitude coupling (PAC)**\nin neural time series.\n\nIn particular, it implements the **driven auto-regressive (DAR)**\nmodels presented in the reference below [`Dupre la Tour et al. 2017`_].\n\nRead more in the `documentation <https://pactools.github.io>`_.\n\nInstallation\n============\n\nTo install ``pactools``, use one of the following two commands:\n\n- Latest stable version::\n\n    pip install pactools\n\n- Development version::\n\n    pip install git+https://github.com/pactools/pactools.git#egg=pactools\n\nTo upgrade, use the ``--upgrade`` flag provided by ``pip``.\n\nTo check if everything worked fine, you can do::\n\n\tpython -c 'import pactools'\n\nand it should not give any error messages.\n\nPhase-amplitude coupling (PAC)\n==============================\nAmong the different classes of cross-frequency couplings,\nphase-amplitude coupling (PAC) - i.e. high frequency activity time-locked\nto a specific phase of slow frequency oscillations - is by far the most\nacknowledged.\nPAC is typically represented with a comodulogram, which shows the strenght of\nthe coupling over a grid of frequencies.\nComodulograms can be computed in `pactools` with more\nthan 10 different methods.\n\nDriven auto-regressive (DAR) models\n===================================\nOne of the method is based on driven auto-regressive (DAR) models.\nAs this method models the entire spectrum simultaneously, it avoids the\npitfalls related to incorrect filtering or the use of the Hilbert transform\non wide-band signals. As the model is probabilistic, it also provides a\nscore of the model **goodness of fit** via the likelihood, enabling easy\nand legitimate model selection and parameter comparison;\nthis data-driven feature is unique to such model-based approach.\n\nWe recommend using DAR models to estimate PAC in neural time-series.\nMore detail in [`Dupre la Tour et al. 2017`_].\n\nAcknowledgment\n==============\n\nThis work was supported by the ERC Starting Grant SLAB ERC-YStG-676943 to\nAlexandre Gramfort, the ERC Starting Grant MindTime ERC-YStG-263584 to Virginie\nvan Wassenhove, the ANR-16-CE37-0004-04 AutoTime to Valerie Doyere and Virginie\nvan Wassenhove, and the Paris-Saclay IDEX NoTime to Valerie Doyere, Alexandre\nGramfort and Virginie van Wassenhove,\n\nCite this work\n==============\n\nIf you use this code in your project, please cite\n[`Dupre la Tour et al. 2017`_]:\n\n\n.. code-block::\n\n    @article{duprelatour2017nonlinear,\n        author = {Dupr{\\'e} la Tour, Tom and Tallot, Lucille and Grabot, Laetitia and Doy{\\`e}re, Val{\\'e}rie and van Wassenhove, Virginie and Grenier, Yves and Gramfort, Alexandre},\n        journal = {PLOS Computational Biology},\n        publisher = {Public Library of Science},\n        title = {Non-linear auto-regressive models for cross-frequency coupling in neural time series},\n        year = {2017},\n        month = {12},\n        volume = {13},\n        url = {https://doi.org/10.1371/journal.pcbi.1005893},\n        pages = {1-32},\n        number = {12},\n        doi = {10.1371/journal.pcbi.1005893}\n    }\n\n\n.. _Dupre la Tour et al. 2017: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005893\n\n\n",
    "bugtrack_url": null,
    "license": "BSD (3-clause)",
    "summary": "Estimation of phase-amplitude coupling (PAC) in neural time series, including with driven auto-regressive (DAR) models.",
    "version": "0.3.1",
    "project_urls": {
        "Download": "https://github.com/pactools/pactools.git",
        "Homepage": "http://github.com/pactools/pactools"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "17144c4eba6e54408e536be27b9891cea68ea391d7d190936593aa71e5c6405e",
                "md5": "6c6a8d42c0f5b59f12ca4f2ecfe3f293",
                "sha256": "99f70c58ea34064e913a754137b5d20f9435ceca0d9955683312f5335c9588d9"
            },
            "downloads": -1,
            "filename": "pactools-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6c6a8d42c0f5b59f12ca4f2ecfe3f293",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 82749,
            "upload_time": "2020-11-03T18:43:36",
            "upload_time_iso_8601": "2020-11-03T18:43:36.870788Z",
            "url": "https://files.pythonhosted.org/packages/17/14/4c4eba6e54408e536be27b9891cea68ea391d7d190936593aa71e5c6405e/pactools-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "58b320e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a",
                "md5": "b3016553391311ebfcca042ff095921f",
                "sha256": "2e7465d10ffed39dd57a2b85cdd417dbce14f212e96eb7618940ca652691e0ce"
            },
            "downloads": -1,
            "filename": "pactools-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b3016553391311ebfcca042ff095921f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 95082,
            "upload_time": "2020-11-03T18:43:38",
            "upload_time_iso_8601": "2020-11-03T18:43:38.733372Z",
            "url": "https://files.pythonhosted.org/packages/58/b3/20e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a/pactools-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-11-03 18:43:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pactools",
    "github_project": "pactools",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "pactools"
}
        
Elapsed time: 0.61492s