Name | pactools JSON |
Version |
0.3.1
JSON |
| download |
home_page | http://github.com/pactools/pactools |
Summary | Estimation of phase-amplitude coupling (PAC) in neural time series, including with driven auto-regressive (DAR) models. |
upload_time | 2020-11-03 18:43:38 |
maintainer | Tom Dupre la Tour |
docs_url | None |
author | |
requires_python | |
license | BSD (3-clause) |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
=============================
Getting Started with pactools
=============================
.. image:: https://travis-ci.org/pactools/pactools.svg?branch=master
:target: https://travis-ci.org/pactools/pactools
:alt: Build Status
.. image:: https://codecov.io/gh/pactools/pactools/branch/master/graph/badge.svg
:target: https://codecov.io/gh/pactools/pactools
:alt: Test coverage
.. image:: https://img.shields.io/badge/python-2.7-blue.svg
:target: https://github.com/pactools/pactools
:alt: Python27
.. image:: https://img.shields.io/badge/python-3.6-blue.svg
:target: https://github.com/pactools/pactools
:alt: Python36
This package provides tools to estimate **phase-amplitude coupling (PAC)**
in neural time series.
In particular, it implements the **driven auto-regressive (DAR)**
models presented in the reference below [`Dupre la Tour et al. 2017`_].
Read more in the `documentation <https://pactools.github.io>`_.
Installation
============
To install ``pactools``, use one of the following two commands:
- Latest stable version::
pip install pactools
- Development version::
pip install git+https://github.com/pactools/pactools.git#egg=pactools
To upgrade, use the ``--upgrade`` flag provided by ``pip``.
To check if everything worked fine, you can do::
python -c 'import pactools'
and it should not give any error messages.
Phase-amplitude coupling (PAC)
==============================
Among the different classes of cross-frequency couplings,
phase-amplitude coupling (PAC) - i.e. high frequency activity time-locked
to a specific phase of slow frequency oscillations - is by far the most
acknowledged.
PAC is typically represented with a comodulogram, which shows the strenght of
the coupling over a grid of frequencies.
Comodulograms can be computed in `pactools` with more
than 10 different methods.
Driven auto-regressive (DAR) models
===================================
One of the method is based on driven auto-regressive (DAR) models.
As this method models the entire spectrum simultaneously, it avoids the
pitfalls related to incorrect filtering or the use of the Hilbert transform
on wide-band signals. As the model is probabilistic, it also provides a
score of the model **goodness of fit** via the likelihood, enabling easy
and legitimate model selection and parameter comparison;
this data-driven feature is unique to such model-based approach.
We recommend using DAR models to estimate PAC in neural time-series.
More detail in [`Dupre la Tour et al. 2017`_].
Acknowledgment
==============
This work was supported by the ERC Starting Grant SLAB ERC-YStG-676943 to
Alexandre Gramfort, the ERC Starting Grant MindTime ERC-YStG-263584 to Virginie
van Wassenhove, the ANR-16-CE37-0004-04 AutoTime to Valerie Doyere and Virginie
van Wassenhove, and the Paris-Saclay IDEX NoTime to Valerie Doyere, Alexandre
Gramfort and Virginie van Wassenhove,
Cite this work
==============
If you use this code in your project, please cite
[`Dupre la Tour et al. 2017`_]:
.. code-block::
@article{duprelatour2017nonlinear,
author = {Dupr{\'e} la Tour, Tom and Tallot, Lucille and Grabot, Laetitia and Doy{\`e}re, Val{\'e}rie and van Wassenhove, Virginie and Grenier, Yves and Gramfort, Alexandre},
journal = {PLOS Computational Biology},
publisher = {Public Library of Science},
title = {Non-linear auto-regressive models for cross-frequency coupling in neural time series},
year = {2017},
month = {12},
volume = {13},
url = {https://doi.org/10.1371/journal.pcbi.1005893},
pages = {1-32},
number = {12},
doi = {10.1371/journal.pcbi.1005893}
}
.. _Dupre la Tour et al. 2017: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005893
Raw data
{
"_id": null,
"home_page": "http://github.com/pactools/pactools",
"name": "pactools",
"maintainer": "Tom Dupre la Tour",
"docs_url": null,
"requires_python": "",
"maintainer_email": "tom.dupre-la-tour@m4x.org",
"keywords": "",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/58/b3/20e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a/pactools-0.3.1.tar.gz",
"platform": "",
"description": "=============================\nGetting Started with pactools\n=============================\n\n.. image:: https://travis-ci.org/pactools/pactools.svg?branch=master\n :target: https://travis-ci.org/pactools/pactools\n :alt: Build Status\n\n.. image:: https://codecov.io/gh/pactools/pactools/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/pactools/pactools\n :alt: Test coverage\n\n.. image:: https://img.shields.io/badge/python-2.7-blue.svg\n :target: https://github.com/pactools/pactools\n :alt: Python27\n\n.. image:: https://img.shields.io/badge/python-3.6-blue.svg\n :target: https://github.com/pactools/pactools\n :alt: Python36\n\nThis package provides tools to estimate **phase-amplitude coupling (PAC)**\nin neural time series.\n\nIn particular, it implements the **driven auto-regressive (DAR)**\nmodels presented in the reference below [`Dupre la Tour et al. 2017`_].\n\nRead more in the `documentation <https://pactools.github.io>`_.\n\nInstallation\n============\n\nTo install ``pactools``, use one of the following two commands:\n\n- Latest stable version::\n\n pip install pactools\n\n- Development version::\n\n pip install git+https://github.com/pactools/pactools.git#egg=pactools\n\nTo upgrade, use the ``--upgrade`` flag provided by ``pip``.\n\nTo check if everything worked fine, you can do::\n\n\tpython -c 'import pactools'\n\nand it should not give any error messages.\n\nPhase-amplitude coupling (PAC)\n==============================\nAmong the different classes of cross-frequency couplings,\nphase-amplitude coupling (PAC) - i.e. high frequency activity time-locked\nto a specific phase of slow frequency oscillations - is by far the most\nacknowledged.\nPAC is typically represented with a comodulogram, which shows the strenght of\nthe coupling over a grid of frequencies.\nComodulograms can be computed in `pactools` with more\nthan 10 different methods.\n\nDriven auto-regressive (DAR) models\n===================================\nOne of the method is based on driven auto-regressive (DAR) models.\nAs this method models the entire spectrum simultaneously, it avoids the\npitfalls related to incorrect filtering or the use of the Hilbert transform\non wide-band signals. As the model is probabilistic, it also provides a\nscore of the model **goodness of fit** via the likelihood, enabling easy\nand legitimate model selection and parameter comparison;\nthis data-driven feature is unique to such model-based approach.\n\nWe recommend using DAR models to estimate PAC in neural time-series.\nMore detail in [`Dupre la Tour et al. 2017`_].\n\nAcknowledgment\n==============\n\nThis work was supported by the ERC Starting Grant SLAB ERC-YStG-676943 to\nAlexandre Gramfort, the ERC Starting Grant MindTime ERC-YStG-263584 to Virginie\nvan Wassenhove, the ANR-16-CE37-0004-04 AutoTime to Valerie Doyere and Virginie\nvan Wassenhove, and the Paris-Saclay IDEX NoTime to Valerie Doyere, Alexandre\nGramfort and Virginie van Wassenhove,\n\nCite this work\n==============\n\nIf you use this code in your project, please cite\n[`Dupre la Tour et al. 2017`_]:\n\n\n.. code-block::\n\n @article{duprelatour2017nonlinear,\n author = {Dupr{\\'e} la Tour, Tom and Tallot, Lucille and Grabot, Laetitia and Doy{\\`e}re, Val{\\'e}rie and van Wassenhove, Virginie and Grenier, Yves and Gramfort, Alexandre},\n journal = {PLOS Computational Biology},\n publisher = {Public Library of Science},\n title = {Non-linear auto-regressive models for cross-frequency coupling in neural time series},\n year = {2017},\n month = {12},\n volume = {13},\n url = {https://doi.org/10.1371/journal.pcbi.1005893},\n pages = {1-32},\n number = {12},\n doi = {10.1371/journal.pcbi.1005893}\n }\n\n\n.. _Dupre la Tour et al. 2017: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005893\n\n\n",
"bugtrack_url": null,
"license": "BSD (3-clause)",
"summary": "Estimation of phase-amplitude coupling (PAC) in neural time series, including with driven auto-regressive (DAR) models.",
"version": "0.3.1",
"project_urls": {
"Download": "https://github.com/pactools/pactools.git",
"Homepage": "http://github.com/pactools/pactools"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "17144c4eba6e54408e536be27b9891cea68ea391d7d190936593aa71e5c6405e",
"md5": "6c6a8d42c0f5b59f12ca4f2ecfe3f293",
"sha256": "99f70c58ea34064e913a754137b5d20f9435ceca0d9955683312f5335c9588d9"
},
"downloads": -1,
"filename": "pactools-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6c6a8d42c0f5b59f12ca4f2ecfe3f293",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 82749,
"upload_time": "2020-11-03T18:43:36",
"upload_time_iso_8601": "2020-11-03T18:43:36.870788Z",
"url": "https://files.pythonhosted.org/packages/17/14/4c4eba6e54408e536be27b9891cea68ea391d7d190936593aa71e5c6405e/pactools-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "58b320e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a",
"md5": "b3016553391311ebfcca042ff095921f",
"sha256": "2e7465d10ffed39dd57a2b85cdd417dbce14f212e96eb7618940ca652691e0ce"
},
"downloads": -1,
"filename": "pactools-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "b3016553391311ebfcca042ff095921f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 95082,
"upload_time": "2020-11-03T18:43:38",
"upload_time_iso_8601": "2020-11-03T18:43:38.733372Z",
"url": "https://files.pythonhosted.org/packages/58/b3/20e00ccf33f6f1a2baa58e17a215e2cb844234042ca6e52903d0d9a5969a/pactools-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-11-03 18:43:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pactools",
"github_project": "pactools",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pactools"
}