palisades


Namepalisades JSON
Version 4.341.1 PyPI version JSON
download
home_pagehttps://github.com/kamangir/palisades
Summary🧑🏽‍🚒 Post-Disaster Land Cover Classification.
upload_time2025-02-07 03:03:48
maintainerNone
docs_urlNone
authorArash Abadpour (Kamangir)
requires_pythonNone
licensePublic Domain
keywords
VCS
bugtrack_url
requirements blue_geo roofai fiona osmnx pyproj dask_geopandas deltalake mercantile planetary_computer s3fs adlfs
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🧑🏽‍🚒 `palisades`

🧑🏽‍🚒 Post-disaster land Cover classification using [Semantic Segmentation](https://github.com/kamangir/roofai) on [Maxar Open Data](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) acquisitions. 

```bash
pip install palisades
```

```mermaid
graph LR
    palisades_ingest_target["palisades<br>ingest -<br>target=&lt;target&gt; -<br>predict - - - -<br>to=&lt;runner&gt;"]

    palisades_ingest_query["palisades<br>ingest -<br>&lt;query-object-name&gt; -<br>predict - - - -<br>to=&lt;runner&gt;"]

    palisades_label["palisades<br>label<br>offset=&lt;offset&gt; -<br>&lt;query-object-name&gt;"]

    palisades_train["palisades<br>train -<br>&lt;query-object-name&gt; -<br>&lt;dataset-object-name&gt; -<br>&lt;model-object-name&gt;"]

    palisades_predict["palisades<br>predict - - -<br>&lt;model-object-name&gt;<br>&lt;datacube-id&gt;<br>&lt;prediction-object-name&gt;"]

    palisades_buildings_download_footprints["palisades<br>buildings<br>download_footprints -<br>&lt;input-object-name&gt; -<br>&lt;output-object-name&gt;"]

    palisades_buildings_analyze["palisades<br>buildings<br>analyze -<br>&lt;prediction-object-name&gt;"]

    palisades_analytics_ingest["palisades<br>analytics<br>ingest -<br>&lt;analytics-object-name&gt;"]

    palisades_analytics_ingest_building["palisades<br>analytics<br>ingest_building<br>building=&lt;building-id&gt;<br>&lt;analytics-object-name&gt;"]

    target["🎯 target"]:::folder
    query_object["📂 query object"]:::folder
    datacube["🧊 datacube"]:::folder
    dataset_object["🏛️ dataset object"]:::folder
    model_object["🏛️ model object"]:::folder
    prediction_object["📂 prediction object"]:::folder
    analytics_object["📂 analytics object"]:::folder

    query_object --> datacube

    target --> palisades_ingest_target
    palisades_ingest_target --> palisades_ingest_query
    palisades_ingest_target --> query_object

    query_object --> palisades_ingest_query
    palisades_ingest_query --> palisades_predict

    query_object --> palisades_label
    palisades_label --> datacube

    datacube --> palisades_train
    query_object --> palisades_train
    palisades_train --> dataset_object
    palisades_train --> model_object

    model_object --> palisades_predict
    datacube --> palisades_predict
    palisades_predict --> palisades_buildings_download_footprints
    palisades_predict --> palisades_buildings_analyze
    palisades_predict --> prediction_object

    prediction_object --> palisades_buildings_download_footprints
    palisades_buildings_download_footprints --> prediction_object

    datacube --> palisades_buildings_analyze
    prediction_object --> palisades_buildings_analyze
    palisades_buildings_analyze --> prediction_object

    prediction_object --> palisades_analytics_ingest
    palisades_analytics_ingest --> analytics_object

    analytics_object --> palisades_analytics_ingest_building
    palisades_analytics_ingest_building --> analytics_object

    classDef folder fill:#999,stroke:#333,stroke-width:2px;
```

<details>
<summary>palisades help</summary>

```bash
palisades \
	ingest \
	[~download,dryrun] \
	[target=<target> | <query-object-name>] \
	[~ingest | ~copy_template,dryrun,overwrite,scope=<scope>,upload] \
	[predict,count=<count>,~tag] \
	[device=<device>,profile=<profile>,upload] \
	[-|<model-object-name>] \
	[~download_footprints | country_code=<iso-code>,country_name=<country-name>,overwrite,source=<source>] \
	[~analyze | buffer=<buffer>,count=<count>] \
	[~submit | dryrun,to=<runner>]
 . ingest <target>.
   target: Altadena | Altadena-100 | Altadena-test | Borger | Borger-250 | Borger-test | Brown-Mountain-Truck-Trail | Brown-Mountain-Truck-Trail-all | Brown-Mountain-Truck-Trail-test | LA | LA-250 | LA-test | Noto | Noto-250 | Noto-test | Palisades-Maxar | Palisades-Maxar-100 | Palisades-Maxar-test
   scope: all + metadata + raster + rgb + rgbx + <.jp2> + <.tif> + <.tiff>
      all: ALL files.
      metadata (default): any < 1 MB.
      raster: all raster.
      rgb: rgb.
      rgbx: rgb and what is needed to build rgb.
      <suffix>: any *<suffix>.
   device: cpu | cuda
   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION
   country-name: for Microsoft, optional, overrides <iso-code>.
   iso-code: Country Alpha2 ISO code: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
      Canada: CA
      US: US
   source: microsoft | osm | google
   calls: https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py
   buffer: in meters.
   runner: aws_batch | generic | local
```
```bash
palisades \
	label \
	[download,offset=<offset>] \
	[~download,dryrun,~QGIS,~rasterize,~sync,upload] \
	[.|<query-object-name>]
 . label <query-object-name>.
```
```bash
palisades \
	train \
	[dryrun,~download,review] \
	[.|<query-object-name>] \
	[count=<10000>,dryrun,upload] \
	[-|<dataset-object-name>] \
	[device=<device>,dryrun,profile=<profile>,upload,epochs=<5>] \
	[-|<model-object-name>]
 . train palisades.
   device: cpu | cuda
   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION
```
```bash
palisades \
	predict \
	[~tag] \
	[~ingest | ~copy_template,dryrun,overwrite,scope=<scope>,upload] \
	[device=<device>,profile=<profile>,upload] \
	[-|<model-object-name>] \
	[.|<datacube-id>] \
	[-|<prediction-object-name>] \
	[~download_footprints | country_code=<iso-code>,country_name=<country-name>,overwrite,source=<source>] \
	[~analyze | buffer=<buffer>,count=<count>]
 . <datacube-id> -<model-object-name>-> <prediction-object-name>
   device: cpu | cuda
   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION
   country-name: for Microsoft, optional, overrides <iso-code>.
   iso-code: Country Alpha2 ISO code: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
      Canada: CA
      US: US
   source: microsoft | osm | google
   calls: https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py
   buffer: in meters.
```
```bash
palisades \
	analytics \
	ingest \
	[acq_count=<-1>,building_count=<-1>,damage=<0.1>,dryrun,upload] \
	[-|<object-name>]
 . ingest analytics.
palisades \
	analytics \
	ingest_building \
	[acq_count=<-1>,building_count=<-1>,building=<building-id>,deep,~download,dryrun,upload] \
	[.|<object-name>]
 . ingest building analytics.
```

</details>

|   |   |   |
| --- | --- | --- |
| [`STAC Catalog: Maxar Open Data`](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) [![image](https://github.com/kamangir/assets/blob/main/blue-geo/Maxar-Open-Datacube.png?raw=true)](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) ["Satellite imagery for select sudden onset major crisis events"](https://www.maxar.com/open-data/) | [`Vision Algo: Semantic Segmentation`](https://github.com/kamangir/palisades/blob/main/palisades/docs/step-by-step.md) [![image](https://github.com/kamangir/assets/raw/main/palisades/prediction-lres.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/step-by-step.md) [segmentation_models.pytorch](https://github.com/qubvel-org/segmentation_models.pytorch) | [`Building Damage Analysis`](https://github.com/kamangir/palisades/blob/main/palisades/docs/building-analysis.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/building-analysis-5.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/building-analysis.md) using Microsoft, OSM, and Google footprints through [microsoft/building-damage-assessment](https://github.com/microsoft/building-damage-assessment) |
| [`Analytics`](https://github.com/kamangir/palisades/blob/main/palisades/docs/damage-analytics.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/palisades-analytics-2025-01-26-17-13-55-jl0par/thumbnail-035521-377202-palisades-analytics-2025-01-26-17-13-55-jl0par.gif?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/damage-analytics.md) per-building multi-observation damage analytics. | [`Los Angeles Wild Fires, Jan 25`](https://github.com/kamangir/palisades/blob/main/palisades/docs/WildFires-LosAngeles-Jan-2025.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/palisades-analytics-2025-01-29-18-08-11-wcq26v/QGIS.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/WildFires-LosAngeles-Jan-2025.md) `2,685.88` sq. km = `1,148,351` buildings processed -> `10,133` with fire damage found. |  |

## Acknowledgments
 
1. The concept and workflow of this tool is heavily affected by [microsoft/building-damage-assessment](https://github.com/microsoft/building-damage-assessment).
2. `palisades buildings download_footprints` calls [`download_building_footprints.py`](https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py).
3. `palisades buildings analyze` is based on [`merge_with_building_footprints.py`](https://github.com/microsoft/building-damage-assessment/blob/main/merge_with_building_footprints.py).
4. Through [satellite-image-deep-learning](https://www.satellite-image-deep-learning.com/p/building-damage-assessment).

---


[![pylint](https://github.com/kamangir/palisades/actions/workflows/pylint.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/pylint.yml) [![pytest](https://github.com/kamangir/palisades/actions/workflows/pytest.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/pytest.yml) [![bashtest](https://github.com/kamangir/palisades/actions/workflows/bashtest.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/bashtest.yml) [![PyPI version](https://img.shields.io/pypi/v/palisades.svg)](https://pypi.org/project/palisades/) [![PyPI - Downloads](https://img.shields.io/pypi/dd/palisades)](https://pypistats.org/packages/palisades)

built by 🌀 [`blue_options-4.219.1`](https://github.com/kamangir/awesome-bash-cli), based on 🧑🏽‍🚒 [`palisades-4.341.1`](https://github.com/kamangir/palisades).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kamangir/palisades",
    "name": "palisades",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Arash Abadpour (Kamangir)",
    "author_email": "arash@kamangir.net",
    "download_url": "https://files.pythonhosted.org/packages/c0/6c/ab14177d59514e9ab0c63e56219ab079a3a1572fcb404013d0af838a154a/palisades-4.341.1.tar.gz",
    "platform": null,
    "description": "# \ud83e\uddd1\ud83c\udffd\u200d\ud83d\ude92 `palisades`\n\n\ud83e\uddd1\ud83c\udffd\u200d\ud83d\ude92 Post-disaster land Cover classification using [Semantic Segmentation](https://github.com/kamangir/roofai) on [Maxar Open Data](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) acquisitions. \n\n```bash\npip install palisades\n```\n\n```mermaid\ngraph LR\n    palisades_ingest_target[\"palisades<br>ingest -<br>target=&lt;target&gt; -<br>predict - - - -<br>to=&lt;runner&gt;\"]\n\n    palisades_ingest_query[\"palisades<br>ingest -<br>&lt;query-object-name&gt; -<br>predict - - - -<br>to=&lt;runner&gt;\"]\n\n    palisades_label[\"palisades<br>label<br>offset=&lt;offset&gt; -<br>&lt;query-object-name&gt;\"]\n\n    palisades_train[\"palisades<br>train -<br>&lt;query-object-name&gt; -<br>&lt;dataset-object-name&gt; -<br>&lt;model-object-name&gt;\"]\n\n    palisades_predict[\"palisades<br>predict - - -<br>&lt;model-object-name&gt;<br>&lt;datacube-id&gt;<br>&lt;prediction-object-name&gt;\"]\n\n    palisades_buildings_download_footprints[\"palisades<br>buildings<br>download_footprints -<br>&lt;input-object-name&gt; -<br>&lt;output-object-name&gt;\"]\n\n    palisades_buildings_analyze[\"palisades<br>buildings<br>analyze -<br>&lt;prediction-object-name&gt;\"]\n\n    palisades_analytics_ingest[\"palisades<br>analytics<br>ingest -<br>&lt;analytics-object-name&gt;\"]\n\n    palisades_analytics_ingest_building[\"palisades<br>analytics<br>ingest_building<br>building=&lt;building-id&gt;<br>&lt;analytics-object-name&gt;\"]\n\n    target[\"\ud83c\udfaf target\"]:::folder\n    query_object[\"\ud83d\udcc2 query object\"]:::folder\n    datacube[\"\ud83e\uddca datacube\"]:::folder\n    dataset_object[\"\ud83c\udfdb\ufe0f dataset object\"]:::folder\n    model_object[\"\ud83c\udfdb\ufe0f model object\"]:::folder\n    prediction_object[\"\ud83d\udcc2 prediction object\"]:::folder\n    analytics_object[\"\ud83d\udcc2 analytics object\"]:::folder\n\n    query_object --> datacube\n\n    target --> palisades_ingest_target\n    palisades_ingest_target --> palisades_ingest_query\n    palisades_ingest_target --> query_object\n\n    query_object --> palisades_ingest_query\n    palisades_ingest_query --> palisades_predict\n\n    query_object --> palisades_label\n    palisades_label --> datacube\n\n    datacube --> palisades_train\n    query_object --> palisades_train\n    palisades_train --> dataset_object\n    palisades_train --> model_object\n\n    model_object --> palisades_predict\n    datacube --> palisades_predict\n    palisades_predict --> palisades_buildings_download_footprints\n    palisades_predict --> palisades_buildings_analyze\n    palisades_predict --> prediction_object\n\n    prediction_object --> palisades_buildings_download_footprints\n    palisades_buildings_download_footprints --> prediction_object\n\n    datacube --> palisades_buildings_analyze\n    prediction_object --> palisades_buildings_analyze\n    palisades_buildings_analyze --> prediction_object\n\n    prediction_object --> palisades_analytics_ingest\n    palisades_analytics_ingest --> analytics_object\n\n    analytics_object --> palisades_analytics_ingest_building\n    palisades_analytics_ingest_building --> analytics_object\n\n    classDef folder fill:#999,stroke:#333,stroke-width:2px;\n```\n\n<details>\n<summary>palisades help</summary>\n\n```bash\npalisades \\\n\tingest \\\n\t[~download,dryrun] \\\n\t[target=<target> | <query-object-name>] \\\n\t[~ingest | ~copy_template,dryrun,overwrite,scope=<scope>,upload] \\\n\t[predict,count=<count>,~tag] \\\n\t[device=<device>,profile=<profile>,upload] \\\n\t[-|<model-object-name>] \\\n\t[~download_footprints | country_code=<iso-code>,country_name=<country-name>,overwrite,source=<source>] \\\n\t[~analyze | buffer=<buffer>,count=<count>] \\\n\t[~submit | dryrun,to=<runner>]\n . ingest <target>.\n   target: Altadena | Altadena-100 | Altadena-test | Borger | Borger-250 | Borger-test | Brown-Mountain-Truck-Trail | Brown-Mountain-Truck-Trail-all | Brown-Mountain-Truck-Trail-test | LA | LA-250 | LA-test | Noto | Noto-250 | Noto-test | Palisades-Maxar | Palisades-Maxar-100 | Palisades-Maxar-test\n   scope: all + metadata + raster + rgb + rgbx + <.jp2> + <.tif> + <.tiff>\n      all: ALL files.\n      metadata (default): any < 1 MB.\n      raster: all raster.\n      rgb: rgb.\n      rgbx: rgb and what is needed to build rgb.\n      <suffix>: any *<suffix>.\n   device: cpu | cuda\n   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION\n   country-name: for Microsoft, optional, overrides <iso-code>.\n   iso-code: Country Alpha2 ISO code: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes\n      Canada: CA\n      US: US\n   source: microsoft | osm | google\n   calls: https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py\n   buffer: in meters.\n   runner: aws_batch | generic | local\n```\n```bash\npalisades \\\n\tlabel \\\n\t[download,offset=<offset>] \\\n\t[~download,dryrun,~QGIS,~rasterize,~sync,upload] \\\n\t[.|<query-object-name>]\n . label <query-object-name>.\n```\n```bash\npalisades \\\n\ttrain \\\n\t[dryrun,~download,review] \\\n\t[.|<query-object-name>] \\\n\t[count=<10000>,dryrun,upload] \\\n\t[-|<dataset-object-name>] \\\n\t[device=<device>,dryrun,profile=<profile>,upload,epochs=<5>] \\\n\t[-|<model-object-name>]\n . train palisades.\n   device: cpu | cuda\n   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION\n```\n```bash\npalisades \\\n\tpredict \\\n\t[~tag] \\\n\t[~ingest | ~copy_template,dryrun,overwrite,scope=<scope>,upload] \\\n\t[device=<device>,profile=<profile>,upload] \\\n\t[-|<model-object-name>] \\\n\t[.|<datacube-id>] \\\n\t[-|<prediction-object-name>] \\\n\t[~download_footprints | country_code=<iso-code>,country_name=<country-name>,overwrite,source=<source>] \\\n\t[~analyze | buffer=<buffer>,count=<count>]\n . <datacube-id> -<model-object-name>-> <prediction-object-name>\n   device: cpu | cuda\n   profile: FULL | DECENT | QUICK | DEBUG | VALIDATION\n   country-name: for Microsoft, optional, overrides <iso-code>.\n   iso-code: Country Alpha2 ISO code: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes\n      Canada: CA\n      US: US\n   source: microsoft | osm | google\n   calls: https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py\n   buffer: in meters.\n```\n```bash\npalisades \\\n\tanalytics \\\n\tingest \\\n\t[acq_count=<-1>,building_count=<-1>,damage=<0.1>,dryrun,upload] \\\n\t[-|<object-name>]\n . ingest analytics.\npalisades \\\n\tanalytics \\\n\tingest_building \\\n\t[acq_count=<-1>,building_count=<-1>,building=<building-id>,deep,~download,dryrun,upload] \\\n\t[.|<object-name>]\n . ingest building analytics.\n```\n\n</details>\n\n|   |   |   |\n| --- | --- | --- |\n| [`STAC Catalog: Maxar Open Data`](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) [![image](https://github.com/kamangir/assets/blob/main/blue-geo/Maxar-Open-Datacube.png?raw=true)](https://github.com/kamangir/blue-geo/tree/main/blue_geo/catalog/maxar_open_data) [\"Satellite imagery for select sudden onset major crisis events\"](https://www.maxar.com/open-data/) | [`Vision Algo: Semantic Segmentation`](https://github.com/kamangir/palisades/blob/main/palisades/docs/step-by-step.md) [![image](https://github.com/kamangir/assets/raw/main/palisades/prediction-lres.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/step-by-step.md) [segmentation_models.pytorch](https://github.com/qubvel-org/segmentation_models.pytorch) | [`Building Damage Analysis`](https://github.com/kamangir/palisades/blob/main/palisades/docs/building-analysis.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/building-analysis-5.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/building-analysis.md) using Microsoft, OSM, and Google footprints through [microsoft/building-damage-assessment](https://github.com/microsoft/building-damage-assessment) |\n| [`Analytics`](https://github.com/kamangir/palisades/blob/main/palisades/docs/damage-analytics.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/palisades-analytics-2025-01-26-17-13-55-jl0par/thumbnail-035521-377202-palisades-analytics-2025-01-26-17-13-55-jl0par.gif?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/damage-analytics.md) per-building multi-observation damage analytics. | [`Los Angeles Wild Fires, Jan 25`](https://github.com/kamangir/palisades/blob/main/palisades/docs/WildFires-LosAngeles-Jan-2025.md) [![image](https://github.com/kamangir/assets/blob/main/palisades/palisades-analytics-2025-01-29-18-08-11-wcq26v/QGIS.png?raw=true)](https://github.com/kamangir/palisades/blob/main/palisades/docs/WildFires-LosAngeles-Jan-2025.md) `2,685.88` sq. km = `1,148,351` buildings processed -> `10,133` with fire damage found. |  |\n\n## Acknowledgments\n \n1. The concept and workflow of this tool is heavily affected by [microsoft/building-damage-assessment](https://github.com/microsoft/building-damage-assessment).\n2. `palisades buildings download_footprints` calls [`download_building_footprints.py`](https://github.com/microsoft/building-damage-assessment/blob/main/download_building_footprints.py).\n3. `palisades buildings analyze` is based on [`merge_with_building_footprints.py`](https://github.com/microsoft/building-damage-assessment/blob/main/merge_with_building_footprints.py).\n4. Through [satellite-image-deep-learning](https://www.satellite-image-deep-learning.com/p/building-damage-assessment).\n\n---\n\n\n[![pylint](https://github.com/kamangir/palisades/actions/workflows/pylint.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/pylint.yml) [![pytest](https://github.com/kamangir/palisades/actions/workflows/pytest.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/pytest.yml) [![bashtest](https://github.com/kamangir/palisades/actions/workflows/bashtest.yml/badge.svg)](https://github.com/kamangir/palisades/actions/workflows/bashtest.yml) [![PyPI version](https://img.shields.io/pypi/v/palisades.svg)](https://pypi.org/project/palisades/) [![PyPI - Downloads](https://img.shields.io/pypi/dd/palisades)](https://pypistats.org/packages/palisades)\n\nbuilt by \ud83c\udf00 [`blue_options-4.219.1`](https://github.com/kamangir/awesome-bash-cli), based on \ud83e\uddd1\ud83c\udffd\u200d\ud83d\ude92 [`palisades-4.341.1`](https://github.com/kamangir/palisades).\n",
    "bugtrack_url": null,
    "license": "Public Domain",
    "summary": "\ud83e\uddd1\ud83c\udffd\u200d\ud83d\ude92 Post-Disaster Land Cover Classification.",
    "version": "4.341.1",
    "project_urls": {
        "Homepage": "https://github.com/kamangir/palisades"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1709ad697e5c9a7353c80b39d089489daf35b7204adbbbdab888a99c3c6e9e38",
                "md5": "0dc95810910106ef86ababec0f8e2c62",
                "sha256": "0836043f52e41e2d76082f80c1a22c28c887d100fc17990ee3fb123850470c94"
            },
            "downloads": -1,
            "filename": "palisades-4.341.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0dc95810910106ef86ababec0f8e2c62",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 43689,
            "upload_time": "2025-02-07T03:03:46",
            "upload_time_iso_8601": "2025-02-07T03:03:46.536971Z",
            "url": "https://files.pythonhosted.org/packages/17/09/ad697e5c9a7353c80b39d089489daf35b7204adbbbdab888a99c3c6e9e38/palisades-4.341.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c06cab14177d59514e9ab0c63e56219ab079a3a1572fcb404013d0af838a154a",
                "md5": "2b3afc03e55716167f4eed9f2f4b8a3b",
                "sha256": "11c7f500252a062bdd48f3d9c8b81f1ffe5e693eeeb11791642605f115bb405d"
            },
            "downloads": -1,
            "filename": "palisades-4.341.1.tar.gz",
            "has_sig": false,
            "md5_digest": "2b3afc03e55716167f4eed9f2f4b8a3b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30255,
            "upload_time": "2025-02-07T03:03:48",
            "upload_time_iso_8601": "2025-02-07T03:03:48.446324Z",
            "url": "https://files.pythonhosted.org/packages/c0/6c/ab14177d59514e9ab0c63e56219ab079a3a1572fcb404013d0af838a154a/palisades-4.341.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-07 03:03:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kamangir",
    "github_project": "palisades",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "blue_geo",
            "specs": []
        },
        {
            "name": "roofai",
            "specs": []
        },
        {
            "name": "fiona",
            "specs": []
        },
        {
            "name": "osmnx",
            "specs": []
        },
        {
            "name": "pyproj",
            "specs": []
        },
        {
            "name": "dask_geopandas",
            "specs": []
        },
        {
            "name": "deltalake",
            "specs": []
        },
        {
            "name": "mercantile",
            "specs": []
        },
        {
            "name": "planetary_computer",
            "specs": []
        },
        {
            "name": "s3fs",
            "specs": []
        },
        {
            "name": "adlfs",
            "specs": []
        }
    ],
    "lcname": "palisades"
}
        
Elapsed time: 0.46557s