Name | pandarallel JSON |
Version |
1.6.5
JSON |
| download |
home_page | https://nalepae.github.io/pandarallel |
Summary | An easy to use library to speed up computation (by parallelizing on multi CPUs) with pandas. |
upload_time | 2023-05-02 20:43:15 |
maintainer | |
docs_url | None |
author | Manu NALEPA |
requires_python | >=3.7 |
license | BSD |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Pandaral·lel
[![PyPI version fury.io](https://badge.fury.io/py/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)
[![PyPI license](https://img.shields.io/pypi/l/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)
[![PyPI download month](https://img.shields.io/pypi/dm/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)
| Without parallelization | ![Without Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_apply.gif?raw=true) |
| :----------------------: | ----------------------------------------------------------------------------------------------------------------- |
| **With parallelization** | ![With Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_parallel_apply.gif?raw=true) |
**Pandaral.lel** provides a simple way to parallelize your pandas operations on all your
CPUs by changing only one line of code. It also displays progress bars.
## Maintainers
- [Manu NALEPA](https://github.com/nalepae/)
- [till-m](https://github.com/till-m)
## Installation
```bash
pip install pandarallel [--upgrade] [--user]
```
## Quickstart
```python
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=True)
# df.apply(func)
df.parallel_apply(func)
```
## Usage
Be sure to check out the [documentation](https://nalepae.github.io/pandarallel).
## Examples
An example of each available `pandas` API is available:
- For [Mac & Linux](https://github.com/nalepae/pandarallel/blob/master/docs/examples_mac_linux.ipynb)
- For [Windows](https://github.com/nalepae/pandarallel/blob/master/docs/examples_windows.ipynb)
Raw data
{
"_id": null,
"home_page": "https://nalepae.github.io/pandarallel",
"name": "pandarallel",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Manu NALEPA",
"author_email": "nalepae@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/6e/c5/787365399cc7262e20d1d9f42ba202018c2191e6cd5b1a2a10f9161dae35/pandarallel-1.6.5.tar.gz",
"platform": null,
"description": "# Pandaral\u00b7lel\n\n[![PyPI version fury.io](https://badge.fury.io/py/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)\n[![PyPI license](https://img.shields.io/pypi/l/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)\n[![PyPI download month](https://img.shields.io/pypi/dm/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)\n\n| Without parallelization | ![Without Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_apply.gif?raw=true) |\n| :----------------------: | ----------------------------------------------------------------------------------------------------------------- |\n| **With parallelization** | ![With Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_parallel_apply.gif?raw=true) |\n\n**Pandaral.lel** provides a simple way to parallelize your pandas operations on all your\nCPUs by changing only one line of code. It also displays progress bars.\n\n## Maintainers\n- [Manu NALEPA](https://github.com/nalepae/)\n- [till-m](https://github.com/till-m)\n\n## Installation\n\n```bash\npip install pandarallel [--upgrade] [--user]\n```\n\n## Quickstart\n\n```python\nfrom pandarallel import pandarallel\n\npandarallel.initialize(progress_bar=True)\n\n# df.apply(func)\ndf.parallel_apply(func)\n```\n\n## Usage\n\nBe sure to check out the [documentation](https://nalepae.github.io/pandarallel).\n\n## Examples\n\nAn example of each available `pandas` API is available:\n\n- For [Mac & Linux](https://github.com/nalepae/pandarallel/blob/master/docs/examples_mac_linux.ipynb)\n- For [Windows](https://github.com/nalepae/pandarallel/blob/master/docs/examples_windows.ipynb)\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "An easy to use library to speed up computation (by parallelizing on multi CPUs) with pandas.",
"version": "1.6.5",
"project_urls": {
"Homepage": "https://nalepae.github.io/pandarallel"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6ec5787365399cc7262e20d1d9f42ba202018c2191e6cd5b1a2a10f9161dae35",
"md5": "f8cebc2165a96a998584cbc0f101451b",
"sha256": "1c2df98ff6441e8ae13ff428ceebaa7ec42d731f7f972c41ce4fdef1d3adf640"
},
"downloads": -1,
"filename": "pandarallel-1.6.5.tar.gz",
"has_sig": false,
"md5_digest": "f8cebc2165a96a998584cbc0f101451b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 14201,
"upload_time": "2023-05-02T20:43:15",
"upload_time_iso_8601": "2023-05-02T20:43:15.214442Z",
"url": "https://files.pythonhosted.org/packages/6e/c5/787365399cc7262e20d1d9f42ba202018c2191e6cd5b1a2a10f9161dae35/pandarallel-1.6.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-02 20:43:15",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pandarallel"
}