pandas-dataclasses


Namepandas-dataclasses JSON
Version 0.11.0 PyPI version JSON
download
home_pagehttps://github.com/astropenguin/pandas-dataclasses/
Summarypandas data creation made easy by dataclass
upload_time2022-12-22 03:03:15
maintainer
docs_urlNone
authorAkio Taniguchi
requires_python>=3.8,<3.12
licenseMIT
keywords pandas dataclass series dataframe typing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pandas-dataclasses

[![Release](https://img.shields.io/pypi/v/pandas-dataclasses?label=Release&color=cornflowerblue&style=flat-square)](https://pypi.org/project/pandas-dataclasses/)
[![Python](https://img.shields.io/pypi/pyversions/pandas-dataclasses?label=Python&color=cornflowerblue&style=flat-square)](https://pypi.org/project/pandas-dataclasses/)
[![Downloads](https://img.shields.io/pypi/dm/pandas-dataclasses?label=Downloads&color=cornflowerblue&style=flat-square)](https://pepy.tech/project/pandas-dataclasses)
[![DOI](https://img.shields.io/badge/DOI-10.5281/zenodo.6127352-cornflowerblue?style=flat-square)](https://doi.org/10.5281/zenodo.6127352)
[![Tests](https://img.shields.io/github/actions/workflow/status/astropenguin/pandas-dataclasses/tests.yml?label=Tests&style=flat-square)](https://github.com/astropenguin/pandas-dataclasses/actions)

pandas data creation made easy by dataclass

## Overview

pandas-dataclass makes it easy to create [pandas] data (DataFrame and Series) by specifying their data types, attributes, and names using the Python's dataclass:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from pandas_dataclasses import AsFrame, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]
    wind: Data[float]


df = Weather.new(
    [2020, 2020, 2021, 2021, 2022],
    [1, 7, 1, 7, 1],
    [7.1, 24.3, 5.4, 25.9, 4.9],
    [2.4, 3.1, 2.3, 2.4, 2.6],
)
```

where `df` will become a DataFrame object like:

```
            temp  wind
year month
2020 1       7.1   2.4
     7      24.3   3.1
2021 1       5.4   2.3
     7      25.9   2.4
2022 1       4.9   2.6
```

### Features

- Specifying data types and names of each element in pandas data
- Specifying metadata stored in pandas data attributes (attrs)
- Support for hierarchical index and columns
- Support for custom factory for data creation
- Support for full [dataclass] features
- Support for static type check by [mypy] and [Pyright] ([Pylance])

### Installation

```bash
pip install pandas-dataclasses
```

## How it works

pandas-dataclasses provides you the following features:

- Type hints for dataclass fields (`Attr`, `Column`, `Data`, `Index`) to specify the data type and name of each element in pandas data
- Mix-in classes for dataclasses (`As`, `AsFrame`, `AsSeries`) to create pandas data by a classmethod (`new`) that takes the same arguments as dataclass initialization

When you call `new`, it will first create a dataclass object and then create a Series or DataFrame object from the dataclass object according the type hints and values in it.
In the example above, `df = Weather.new(...)` is thus equivalent to:

<details>
<summary>Click to see all imports</summary>

```python
from pandas_dataclasses import asframe
```
</details>

```python
obj = Weather([2020, ...], [1, ...], [7.1, ...], [2.4, ...])
df = asframe(obj)
```

where `asframe` is a conversion function.
pandas-dataclasses does not touch the dataclass object creation itself; this allows you to fully customize your dataclass before conversion by the dataclass features (`field`, `__post_init__`, ...).

## Basic usage

### DataFrame creation

As shown in the example above, a dataclass that has the `AsFrame` (or `AsDataFrame` as an alias) mix-in will create DataFrame objects:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from pandas_dataclasses import AsFrame, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]
    wind: Data[float]


df = Weather.new(...)
```

where fields typed by `Index` are *index fields*, each value of which will become an index or a part of a hierarchical index of a DataFrame object.
Fields typed by `Data` are *data fields*, each value of which will become a data column of a DataFrame object.
Fields typed by other types are just ignored in the DataFrame creation.

Each data or index will be cast to the data type specified in a type hint like `Index[int]`.
Use `Any` or `None` (like `Index[Any]`) if you do not want type casting.
See also [data typing rules](#data-typing-rules) for more examples.

By default, a field name (i.e. an argument name) is used for the name of corresponding data or index.
See also [custom naming](#custom-naming) and [naming rules](#naming-rules) if you want customization.

### Series creation

A dataclass that has the `AsSeries` mix-in will create Series objects:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from pandas_dataclasses import AsSeries, Data, Index
```
</details>

```python
@dataclass
class Weather(AsSeries):
    """Weather information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]


ser = Weather.new(...)
```

Unlike `AsFrame`, the second and subsequent data fields are ignored in the Series creation even if they exist.
Other rules are the same as for the DataFrame creation.

## Advanced usage

### Metadata storing

Fields typed by `Attr` are *attribute fields*, each value of which will become an item of attributes of a DataFrame or a Series object:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from pandas_dataclasses import AsFrame, Attr, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]
    wind: Data[float]
    loc: Attr[str] = "Tokyo"
    lon: Attr[float] = 139.69167
    lat: Attr[float] = 35.68944


df = Weather.new(...)
```

where `df.attrs` will become like:

```python
{"loc": "Tokyo", "lon": 139.69167, "lat": 35.68944}
```

### Custom naming

The name of attribute, data, or index can be explicitly specified by adding a hashable annotation to the corresponding type:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from typing import Annotated as Ann
from pandas_dataclasses import AsFrame, Attr, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Ann[Index[int], "Year"]
    month: Ann[Index[int], "Month"]
    temp: Ann[Data[float], "Temperature (deg C)"]
    wind: Ann[Data[float], "Wind speed (m/s)"]
    loc: Ann[Attr[str], "Location"] = "Tokyo"
    lon: Ann[Attr[float], "Longitude (deg)"] = 139.69167
    lat: Ann[Attr[float], "Latitude (deg)"] = 35.68944


df = Weather.new(...)
```

where `df` and `df.attrs` will become like:

```
            Temperature (deg C)  Wind speed (m/s)
Year Month
2020 1                      7.1               2.4
     7                     24.3               3.1
2021 1                      5.4               2.3
     7                     25.9               2.4
2022 1                      4.9               2.6
```

```python
{"Location": "Tokyo", "Longitude (deg)": 139.69167, "Latitude (deg)": 35.68944}
```

If an annotation is a [format string], it will be formatted by a dataclass object before the data creation:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from typing import Annotated as Ann
from pandas_dataclasses import AsFrame, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Ann[Index[int], "Year"]
    month: Ann[Index[int], "Month"]
    temp: Ann[Data[float], "Temperature ({.temp_unit})"]
    wind: Ann[Data[float], "Wind speed ({.wind_unit})"]
    temp_unit: str = "deg C"
    wind_unit: str = "m/s"


df = Weather.new(..., temp_unit="deg F", wind_unit="km/h")
```

where units of the temperature and the wind speed will be dynamically updated (see also [naming rules](#naming-rules)).

### Hierarchical columns

Adding tuple annotations to data fields will create DataFrame objects with hierarchical columns:

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from typing import Annotated as Ann
from pandas_dataclasses import AsFrame, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Ann[Index[int], "Year"]
    month: Ann[Index[int], "Month"]
    temp_avg: Ann[Data[float], ("Temperature (deg C)", "Average")]
    temp_max: Ann[Data[float], ("Temperature (deg C)", "Maximum")]
    wind_avg: Ann[Data[float], ("Wind speed (m/s)", "Average")]
    wind_max: Ann[Data[float], ("Wind speed (m/s)", "Maximum")]


df = Weather.new(...)
```

where `df` will become like:

```
           Temperature (deg C)         Wind speed (m/s)
                       Average Maximum          Average Maximum
Year Month
2020 1                     7.1    11.1              2.4     8.8
     7                    24.3    27.7              3.1    10.2
2021 1                     5.4    10.3              2.3    10.7
     7                    25.9    30.3              2.4     9.0
2022 1                     4.9     9.4              2.6     8.8
```

Column names can be (explicitly) specified by *column fields* (with hashable annotations):

<details>
<summary>Click to see all imports</summary>

```python
from dataclasses import dataclass
from typing import Annotated as Ann
from pandas_dataclasses import AsFrame, Column, Data, Index
```
</details>

```python
@dataclass
class Weather(AsFrame):
    """Weather information."""

    year: Ann[Index[int], "Year"]
    month: Ann[Index[int], "Month"]
    temp_avg: Ann[Data[float], ("Temperature (deg C)", "Average")]
    temp_max: Ann[Data[float], ("Temperature (deg C)", "Maximum")]
    wind_avg: Ann[Data[float], ("Wind speed (m/s)", "Average")]
    wind_max: Ann[Data[float], ("Wind speed (m/s)", "Maximum")]
    meas: Ann[Column[None], "Measurement"] = None
    stat: Ann[Column[None], "Statistic"] = None


df = Weather.new(...)
```

where `df` will become like:

```
Measurement Temperature (deg C)         Wind speed (m/s)
Statistic               Average Maximum          Average Maximum
Year Month
2020 1                      7.1    11.1              2.4     8.8
     7                     24.3    27.7              3.1    10.2
2021 1                      5.4    10.3              2.3    10.7
     7                     25.9    30.3              2.4     9.0
2022 1                      4.9     9.4              2.6     8.8
```

Note that the values of the columns fields never be used for the data creation (i.e. dummy values).
If a tuple annotation has [format string]s, they will also be formatted by a dataclass object (see also [naming rules](#naming-rules)).

### Custom pandas factory

A custom class can be specified as a factory for the Series or DataFrame creation by `As`, the generic version of `AsFrame` and `AsSeries`.
Note that the custom class must be a subclass of either `pandas.Series` or `pandas.DataFrame`:

<details>
<summary>Click to see all imports</summary>

```python
import pandas as pd
from dataclasses import dataclass
from pandas_dataclasses import As, Data, Index
```
</details>

```python
class CustomSeries(pd.Series):
    """Custom pandas Series."""

    pass


@dataclass
class Temperature(As[CustomSeries]):
    """Temperature information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]


ser = Temperature.new(...)
```

where `ser` is statically regarded as `CustomSeries` and will become a `CustomSeries` object.

Generic Series type (`Series[T]`) is also supported, however, it is only for static the type check in the current pandas versions.
In such cases, you can additionally give a factory that must work in runtime as a class argument:

<details>
<summary>Click to see all imports</summary>

```python
import pandas as pd
from dataclasses import dataclass
from pandas_dataclasses import As, Data, Index
```
</details>

```python
@dataclass
class Temperature(As["pd.Series[float]"], factory=pd.Series):
    """Temperature information."""

    year: Index[int]
    month: Index[int]
    temp: Data[float]


ser = Temperature.new(...)
```

where `ser` is statically regarded as `Series[float]` but will become a `Series` object in runtime.

## Appendix

### Data typing rules

The data type (dtype) of data or index is determined from the first `Data` or `Index` type of the corresponding field, respectively.
The following table shows how the data type is inferred:

<details>
<summary>Click to see all imports</summary>

```python
from typing import Any, Annotated as Ann, Literal as L
from pandas_dataclasses import Data
```
</details>

Type hint | Inferred data type
--- | ---
`Data[Any]` | `None` (no type casting)
`Data[None]` | `None` (no type casting)
`Data[int]` | `numpy.int64`
`Data[int \| str]` | `numpy.int64`
`Data[numpy.int32]` | `numpy.int32`
`Data[L["datetime64[ns]"]]` | `numpy.dtype("<M8[ns]")`
`Data[L["category"]]` | `pandas.CategoricalDtype()`
`Data[int] \| str` | `numpy.int64`
`Data[int] \| Data[float]` | `numpy.int64`
`Ann[Data[int], "spam"]` | `numpy.int64`
`Data[Ann[int, "spam"]]` | `numpy.int64`

### Naming rules

The name of attribute, column, data, or index is determined from the first annotation of the first `Attr`, `Column`, `Data`, or `Index` type of the corresponding field, respectively.
If the annotation is a [format string] or a tuple that has [format string]s, it (they) will be formatted by a dataclass object before the data creation.
Otherwise, the field name (i.e. argument name) will be used.
The following table shows how the name is inferred:

<details>
<summary>Click to see all imports</summary>

```python
from typing import Any, Annotated as Ann
from pandas_dataclasses import Data
```
</details>

Type hint | Inferred name
--- | ---
`Data[Any]` | (field name)
`Ann[Data[Any], ..., "spam"]` | (field name)
`Ann[Data[Any], "spam"]` | `"spam"`
`Ann[Data[Any], "spam", "ham"]` | `"spam"`
`Ann[Data[Any], "spam"] \| Ann[str, "ham"]` | `"spam"`
`Ann[Data[Any], "spam"] \| Ann[Data[float], "ham"]` | `"spam"`
`Ann[Data[Any], "{.name}"` | `"{.name}".format(obj)`
`Ann[Data[Any], ("spam", "ham")]` | `("spam", "ham")`
`Ann[Data[Any], ("{.name}", "ham")]` | `("{.name}".format(obj), "ham")`

where `obj` is a dataclass object that is expected to have `obj.name`.

### Development roadmap

Release version | Features
--- | ---
v0.5 | Support for dynamic naming
v0.6 | Support for extension array and dtype
v0.7 | Support for hierarchical columns
v0.8 | Support for mypy and callable pandas factory
v0.9 | Support for Ellipsis (`...`) as an alias of field name
v0.10 | Support for union type in type hints
v0.11 | Support for Python 3.11 and drop support for Python 3.7
v0.12 | Support for multiple items received in a single field
v1.0 | Initial major release (freezing public features until v2.0)

<!-- References -->
[dataclass]: https://docs.python.org/3/library/dataclasses.html
[format string]: https://docs.python.org/3/library/string.html#format-string-syntax
[mypy]: http://www.mypy-lang.org
[NumPy]: https://numpy.org
[pandas]: https://pandas.pydata.org
[Pylance]: https://github.com/microsoft/pylance-release
[Pyright]: https://github.com/microsoft/pyright

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/astropenguin/pandas-dataclasses/",
    "name": "pandas-dataclasses",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<3.12",
    "maintainer_email": "",
    "keywords": "pandas,dataclass,series,dataframe,typing",
    "author": "Akio Taniguchi",
    "author_email": "taniguchi@a.phys.nagoya-u.ac.jp",
    "download_url": "https://files.pythonhosted.org/packages/83/66/57fbf1b95dcc6efd373b5d6ba16e3df627e26f6e1e264105165cf90cc5e0/pandas_dataclasses-0.11.0.tar.gz",
    "platform": null,
    "description": "# pandas-dataclasses\n\n[![Release](https://img.shields.io/pypi/v/pandas-dataclasses?label=Release&color=cornflowerblue&style=flat-square)](https://pypi.org/project/pandas-dataclasses/)\n[![Python](https://img.shields.io/pypi/pyversions/pandas-dataclasses?label=Python&color=cornflowerblue&style=flat-square)](https://pypi.org/project/pandas-dataclasses/)\n[![Downloads](https://img.shields.io/pypi/dm/pandas-dataclasses?label=Downloads&color=cornflowerblue&style=flat-square)](https://pepy.tech/project/pandas-dataclasses)\n[![DOI](https://img.shields.io/badge/DOI-10.5281/zenodo.6127352-cornflowerblue?style=flat-square)](https://doi.org/10.5281/zenodo.6127352)\n[![Tests](https://img.shields.io/github/actions/workflow/status/astropenguin/pandas-dataclasses/tests.yml?label=Tests&style=flat-square)](https://github.com/astropenguin/pandas-dataclasses/actions)\n\npandas data creation made easy by dataclass\n\n## Overview\n\npandas-dataclass makes it easy to create [pandas] data (DataFrame and Series) by specifying their data types, attributes, and names using the Python's dataclass:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import AsFrame, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n    wind: Data[float]\n\n\ndf = Weather.new(\n    [2020, 2020, 2021, 2021, 2022],\n    [1, 7, 1, 7, 1],\n    [7.1, 24.3, 5.4, 25.9, 4.9],\n    [2.4, 3.1, 2.3, 2.4, 2.6],\n)\n```\n\nwhere `df` will become a DataFrame object like:\n\n```\n            temp  wind\nyear month\n2020 1       7.1   2.4\n     7      24.3   3.1\n2021 1       5.4   2.3\n     7      25.9   2.4\n2022 1       4.9   2.6\n```\n\n### Features\n\n- Specifying data types and names of each element in pandas data\n- Specifying metadata stored in pandas data attributes (attrs)\n- Support for hierarchical index and columns\n- Support for custom factory for data creation\n- Support for full [dataclass] features\n- Support for static type check by [mypy] and [Pyright] ([Pylance])\n\n### Installation\n\n```bash\npip install pandas-dataclasses\n```\n\n## How it works\n\npandas-dataclasses provides you the following features:\n\n- Type hints for dataclass fields (`Attr`, `Column`, `Data`, `Index`) to specify the data type and name of each element in pandas data\n- Mix-in classes for dataclasses (`As`, `AsFrame`, `AsSeries`) to create pandas data by a classmethod (`new`) that takes the same arguments as dataclass initialization\n\nWhen you call `new`, it will first create a dataclass object and then create a Series or DataFrame object from the dataclass object according the type hints and values in it.\nIn the example above, `df = Weather.new(...)` is thus equivalent to:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom pandas_dataclasses import asframe\n```\n</details>\n\n```python\nobj = Weather([2020, ...], [1, ...], [7.1, ...], [2.4, ...])\ndf = asframe(obj)\n```\n\nwhere `asframe` is a conversion function.\npandas-dataclasses does not touch the dataclass object creation itself; this allows you to fully customize your dataclass before conversion by the dataclass features (`field`, `__post_init__`, ...).\n\n## Basic usage\n\n### DataFrame creation\n\nAs shown in the example above, a dataclass that has the `AsFrame` (or `AsDataFrame` as an alias) mix-in will create DataFrame objects:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import AsFrame, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n    wind: Data[float]\n\n\ndf = Weather.new(...)\n```\n\nwhere fields typed by `Index` are *index fields*, each value of which will become an index or a part of a hierarchical index of a DataFrame object.\nFields typed by `Data` are *data fields*, each value of which will become a data column of a DataFrame object.\nFields typed by other types are just ignored in the DataFrame creation.\n\nEach data or index will be cast to the data type specified in a type hint like `Index[int]`.\nUse `Any` or `None` (like `Index[Any]`) if you do not want type casting.\nSee also [data typing rules](#data-typing-rules) for more examples.\n\nBy default, a field name (i.e. an argument name) is used for the name of corresponding data or index.\nSee also [custom naming](#custom-naming) and [naming rules](#naming-rules) if you want customization.\n\n### Series creation\n\nA dataclass that has the `AsSeries` mix-in will create Series objects:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import AsSeries, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsSeries):\n    \"\"\"Weather information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n\n\nser = Weather.new(...)\n```\n\nUnlike `AsFrame`, the second and subsequent data fields are ignored in the Series creation even if they exist.\nOther rules are the same as for the DataFrame creation.\n\n## Advanced usage\n\n### Metadata storing\n\nFields typed by `Attr` are *attribute fields*, each value of which will become an item of attributes of a DataFrame or a Series object:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import AsFrame, Attr, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n    wind: Data[float]\n    loc: Attr[str] = \"Tokyo\"\n    lon: Attr[float] = 139.69167\n    lat: Attr[float] = 35.68944\n\n\ndf = Weather.new(...)\n```\n\nwhere `df.attrs` will become like:\n\n```python\n{\"loc\": \"Tokyo\", \"lon\": 139.69167, \"lat\": 35.68944}\n```\n\n### Custom naming\n\nThe name of attribute, data, or index can be explicitly specified by adding a hashable annotation to the corresponding type:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom typing import Annotated as Ann\nfrom pandas_dataclasses import AsFrame, Attr, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Ann[Index[int], \"Year\"]\n    month: Ann[Index[int], \"Month\"]\n    temp: Ann[Data[float], \"Temperature (deg C)\"]\n    wind: Ann[Data[float], \"Wind speed (m/s)\"]\n    loc: Ann[Attr[str], \"Location\"] = \"Tokyo\"\n    lon: Ann[Attr[float], \"Longitude (deg)\"] = 139.69167\n    lat: Ann[Attr[float], \"Latitude (deg)\"] = 35.68944\n\n\ndf = Weather.new(...)\n```\n\nwhere `df` and `df.attrs` will become like:\n\n```\n            Temperature (deg C)  Wind speed (m/s)\nYear Month\n2020 1                      7.1               2.4\n     7                     24.3               3.1\n2021 1                      5.4               2.3\n     7                     25.9               2.4\n2022 1                      4.9               2.6\n```\n\n```python\n{\"Location\": \"Tokyo\", \"Longitude (deg)\": 139.69167, \"Latitude (deg)\": 35.68944}\n```\n\nIf an annotation is a [format string], it will be formatted by a dataclass object before the data creation:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom typing import Annotated as Ann\nfrom pandas_dataclasses import AsFrame, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Ann[Index[int], \"Year\"]\n    month: Ann[Index[int], \"Month\"]\n    temp: Ann[Data[float], \"Temperature ({.temp_unit})\"]\n    wind: Ann[Data[float], \"Wind speed ({.wind_unit})\"]\n    temp_unit: str = \"deg C\"\n    wind_unit: str = \"m/s\"\n\n\ndf = Weather.new(..., temp_unit=\"deg F\", wind_unit=\"km/h\")\n```\n\nwhere units of the temperature and the wind speed will be dynamically updated (see also [naming rules](#naming-rules)).\n\n### Hierarchical columns\n\nAdding tuple annotations to data fields will create DataFrame objects with hierarchical columns:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom typing import Annotated as Ann\nfrom pandas_dataclasses import AsFrame, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Ann[Index[int], \"Year\"]\n    month: Ann[Index[int], \"Month\"]\n    temp_avg: Ann[Data[float], (\"Temperature (deg C)\", \"Average\")]\n    temp_max: Ann[Data[float], (\"Temperature (deg C)\", \"Maximum\")]\n    wind_avg: Ann[Data[float], (\"Wind speed (m/s)\", \"Average\")]\n    wind_max: Ann[Data[float], (\"Wind speed (m/s)\", \"Maximum\")]\n\n\ndf = Weather.new(...)\n```\n\nwhere `df` will become like:\n\n```\n           Temperature (deg C)         Wind speed (m/s)\n                       Average Maximum          Average Maximum\nYear Month\n2020 1                     7.1    11.1              2.4     8.8\n     7                    24.3    27.7              3.1    10.2\n2021 1                     5.4    10.3              2.3    10.7\n     7                    25.9    30.3              2.4     9.0\n2022 1                     4.9     9.4              2.6     8.8\n```\n\nColumn names can be (explicitly) specified by *column fields* (with hashable annotations):\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom dataclasses import dataclass\nfrom typing import Annotated as Ann\nfrom pandas_dataclasses import AsFrame, Column, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Weather(AsFrame):\n    \"\"\"Weather information.\"\"\"\n\n    year: Ann[Index[int], \"Year\"]\n    month: Ann[Index[int], \"Month\"]\n    temp_avg: Ann[Data[float], (\"Temperature (deg C)\", \"Average\")]\n    temp_max: Ann[Data[float], (\"Temperature (deg C)\", \"Maximum\")]\n    wind_avg: Ann[Data[float], (\"Wind speed (m/s)\", \"Average\")]\n    wind_max: Ann[Data[float], (\"Wind speed (m/s)\", \"Maximum\")]\n    meas: Ann[Column[None], \"Measurement\"] = None\n    stat: Ann[Column[None], \"Statistic\"] = None\n\n\ndf = Weather.new(...)\n```\n\nwhere `df` will become like:\n\n```\nMeasurement Temperature (deg C)         Wind speed (m/s)\nStatistic               Average Maximum          Average Maximum\nYear Month\n2020 1                      7.1    11.1              2.4     8.8\n     7                     24.3    27.7              3.1    10.2\n2021 1                      5.4    10.3              2.3    10.7\n     7                     25.9    30.3              2.4     9.0\n2022 1                      4.9     9.4              2.6     8.8\n```\n\nNote that the values of the columns fields never be used for the data creation (i.e. dummy values).\nIf a tuple annotation has [format string]s, they will also be formatted by a dataclass object (see also [naming rules](#naming-rules)).\n\n### Custom pandas factory\n\nA custom class can be specified as a factory for the Series or DataFrame creation by `As`, the generic version of `AsFrame` and `AsSeries`.\nNote that the custom class must be a subclass of either `pandas.Series` or `pandas.DataFrame`:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nimport pandas as pd\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import As, Data, Index\n```\n</details>\n\n```python\nclass CustomSeries(pd.Series):\n    \"\"\"Custom pandas Series.\"\"\"\n\n    pass\n\n\n@dataclass\nclass Temperature(As[CustomSeries]):\n    \"\"\"Temperature information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n\n\nser = Temperature.new(...)\n```\n\nwhere `ser` is statically regarded as `CustomSeries` and will become a `CustomSeries` object.\n\nGeneric Series type (`Series[T]`) is also supported, however, it is only for static the type check in the current pandas versions.\nIn such cases, you can additionally give a factory that must work in runtime as a class argument:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nimport pandas as pd\nfrom dataclasses import dataclass\nfrom pandas_dataclasses import As, Data, Index\n```\n</details>\n\n```python\n@dataclass\nclass Temperature(As[\"pd.Series[float]\"], factory=pd.Series):\n    \"\"\"Temperature information.\"\"\"\n\n    year: Index[int]\n    month: Index[int]\n    temp: Data[float]\n\n\nser = Temperature.new(...)\n```\n\nwhere `ser` is statically regarded as `Series[float]` but will become a `Series` object in runtime.\n\n## Appendix\n\n### Data typing rules\n\nThe data type (dtype) of data or index is determined from the first `Data` or `Index` type of the corresponding field, respectively.\nThe following table shows how the data type is inferred:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom typing import Any, Annotated as Ann, Literal as L\nfrom pandas_dataclasses import Data\n```\n</details>\n\nType hint | Inferred data type\n--- | ---\n`Data[Any]` | `None` (no type casting)\n`Data[None]` | `None` (no type casting)\n`Data[int]` | `numpy.int64`\n`Data[int \\| str]` | `numpy.int64`\n`Data[numpy.int32]` | `numpy.int32`\n`Data[L[\"datetime64[ns]\"]]` | `numpy.dtype(\"<M8[ns]\")`\n`Data[L[\"category\"]]` | `pandas.CategoricalDtype()`\n`Data[int] \\| str` | `numpy.int64`\n`Data[int] \\| Data[float]` | `numpy.int64`\n`Ann[Data[int], \"spam\"]` | `numpy.int64`\n`Data[Ann[int, \"spam\"]]` | `numpy.int64`\n\n### Naming rules\n\nThe name of attribute, column, data, or index is determined from the first annotation of the first `Attr`, `Column`, `Data`, or `Index` type of the corresponding field, respectively.\nIf the annotation is a [format string] or a tuple that has [format string]s, it (they) will be formatted by a dataclass object before the data creation.\nOtherwise, the field name (i.e. argument name) will be used.\nThe following table shows how the name is inferred:\n\n<details>\n<summary>Click to see all imports</summary>\n\n```python\nfrom typing import Any, Annotated as Ann\nfrom pandas_dataclasses import Data\n```\n</details>\n\nType hint | Inferred name\n--- | ---\n`Data[Any]` | (field name)\n`Ann[Data[Any], ..., \"spam\"]` | (field name)\n`Ann[Data[Any], \"spam\"]` | `\"spam\"`\n`Ann[Data[Any], \"spam\", \"ham\"]` | `\"spam\"`\n`Ann[Data[Any], \"spam\"] \\| Ann[str, \"ham\"]` | `\"spam\"`\n`Ann[Data[Any], \"spam\"] \\| Ann[Data[float], \"ham\"]` | `\"spam\"`\n`Ann[Data[Any], \"{.name}\"` | `\"{.name}\".format(obj)`\n`Ann[Data[Any], (\"spam\", \"ham\")]` | `(\"spam\", \"ham\")`\n`Ann[Data[Any], (\"{.name}\", \"ham\")]` | `(\"{.name}\".format(obj), \"ham\")`\n\nwhere `obj` is a dataclass object that is expected to have `obj.name`.\n\n### Development roadmap\n\nRelease version | Features\n--- | ---\nv0.5 | Support for dynamic naming\nv0.6 | Support for extension array and dtype\nv0.7 | Support for hierarchical columns\nv0.8 | Support for mypy and callable pandas factory\nv0.9 | Support for Ellipsis (`...`) as an alias of field name\nv0.10 | Support for union type in type hints\nv0.11 | Support for Python 3.11 and drop support for Python 3.7\nv0.12 | Support for multiple items received in a single field\nv1.0 | Initial major release (freezing public features until v2.0)\n\n<!-- References -->\n[dataclass]: https://docs.python.org/3/library/dataclasses.html\n[format string]: https://docs.python.org/3/library/string.html#format-string-syntax\n[mypy]: http://www.mypy-lang.org\n[NumPy]: https://numpy.org\n[pandas]: https://pandas.pydata.org\n[Pylance]: https://github.com/microsoft/pylance-release\n[Pyright]: https://github.com/microsoft/pyright\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "pandas data creation made easy by dataclass",
    "version": "0.11.0",
    "split_keywords": [
        "pandas",
        "dataclass",
        "series",
        "dataframe",
        "typing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "f825b8c9bd71349b98a77ad1eb301f08",
                "sha256": "1a89ceed77c7b4a4918f90a75ecb1d05a648d7e8f3c3685d25cf63281f5b93c3"
            },
            "downloads": -1,
            "filename": "pandas_dataclasses-0.11.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f825b8c9bd71349b98a77ad1eb301f08",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.12",
            "size": 13043,
            "upload_time": "2022-12-22T03:03:14",
            "upload_time_iso_8601": "2022-12-22T03:03:14.508787Z",
            "url": "https://files.pythonhosted.org/packages/db/fc/461e180dc4592e294282313914175b962e07aca05ab7d0da03372403dca0/pandas_dataclasses-0.11.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "2728d9a72e5e9faa4765289b401f4c2e",
                "sha256": "824a7e2c9795b45989b5ecf15e243fab1a06e4ca8ee88e9a553b51261a542481"
            },
            "downloads": -1,
            "filename": "pandas_dataclasses-0.11.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2728d9a72e5e9faa4765289b401f4c2e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.12",
            "size": 15563,
            "upload_time": "2022-12-22T03:03:15",
            "upload_time_iso_8601": "2022-12-22T03:03:15.710055Z",
            "url": "https://files.pythonhosted.org/packages/83/66/57fbf1b95dcc6efd373b5d6ba16e3df627e26f6e1e264105165cf90cc5e0/pandas_dataclasses-0.11.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-22 03:03:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "astropenguin",
    "github_project": "pandas-dataclasses",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pandas-dataclasses"
}
        
Elapsed time: 0.04405s