# pandas-parallel-apply
`df.apply(fn)`, `df[col].apply(fn)` and `series.apply(fn)` wrappers with tqdm included
## Installation
`pip install pandas-parallel-apply`
## Examples
See `examples/` for usage on some dummy dataframe and series.
## Usage
## 1. Procedural
### Apply on each row of a dataframe
`df.apply(fn)` -> `apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)`
### Apply on a column of a dataframe and return the Series
`df[col].apply(fn, axis=1)` -> `apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)`
### Apply on a series and return the modified Series
`series.apply(fn)` -> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)
### Switches for boolean parallel/non-parallel
`apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)`
## 2. Object Oriented Programming
### Apply on each row of a dataframe
`df.apply(fn)` -> `DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)`
### Apply on a column of a dataframe and return the Series
`df[col].apply(fn, axis=1)` -> `DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)`
### Apply on a series
`series.apply(fn)` -> `SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)`
That's all.
Raw data
{
"_id": null,
"home_page": "https://gitlab.com/mihaicristianpirvu/pandas-parallel-apply",
"name": "pandas-parallel-apply",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/d4/2d/f92e2caa416d3d661d8964899b1639c1457722d610655b9631db3eb96e4d/pandas-parallel-apply-1.4.3.tar.gz",
"platform": null,
"description": "# pandas-parallel-apply\n\n`df.apply(fn)`, `df[col].apply(fn)` and `series.apply(fn)` wrappers with tqdm included\n\n## Installation\n\n`pip install pandas-parallel-apply`\n\n## Examples\nSee `examples/` for usage on some dummy dataframe and series.\n\n## Usage\n\n## 1. Procedural\n\n### Apply on each row of a dataframe\n\n`df.apply(fn)` -> `apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)`\n\n### Apply on a column of a dataframe and return the Series\n\n`df[col].apply(fn, axis=1)` -> `apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)`\n\n### Apply on a series and return the modified Series\n`series.apply(fn)` -> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)\n\n### Switches for boolean parallel/non-parallel\n\n`apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)`\n\n## 2. Object Oriented Programming\n\n### Apply on each row of a dataframe\n\n`df.apply(fn)` -> `DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)`\n\n### Apply on a column of a dataframe and return the Series\n`df[col].apply(fn, axis=1)` -> `DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)`\n\n### Apply on a series\n`series.apply(fn)` -> `SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)`\n\nThat's all.\n\n\n",
"bugtrack_url": null,
"license": "WTFPL",
"summary": "Wrapper for df and df[col].apply parallelized",
"version": "1.4.3",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "f6f87a4c299b88564a5f4900b23aba59",
"sha256": "80ce57719e499918409f360bb5e864ebd2fbca889d6e7481606fe7dac3487e72"
},
"downloads": -1,
"filename": "pandas-parallel-apply-1.4.3.tar.gz",
"has_sig": false,
"md5_digest": "f6f87a4c299b88564a5f4900b23aba59",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 4509,
"upload_time": "2022-05-20T13:36:35",
"upload_time_iso_8601": "2022-05-20T13:36:35.086353Z",
"url": "https://files.pythonhosted.org/packages/d4/2d/f92e2caa416d3d661d8964899b1639c1457722d610655b9631db3eb96e4d/pandas-parallel-apply-1.4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-05-20 13:36:35",
"github": false,
"gitlab": true,
"bitbucket": false,
"gitlab_user": "mihaicristianpirvu",
"gitlab_project": "pandas-parallel-apply",
"lcname": "pandas-parallel-apply"
}