| Name | pandora JSON |
| Version |
1.7.1
JSON |
| download |
| home_page | None |
| Summary | Pandora is a stereo matching framework that helps emulate state of the art algorithms |
| upload_time | 2025-09-04 10:10:57 |
| maintainer | None |
| docs_url | None |
| author | CNES |
| requires_python | >=3.8 |
| license | None |
| keywords |
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
<div align="center">
<a target="_blank" href="https://github.com/CNES/pandora">
<picture>
<img
src="https://raw.githubusercontent.com/CNES/Pandora/master/docs/source/Images/logo/logo_typo_large.png?inline=false""
alt="Pandora"
width="40%"
/>
</picture>
</a>
<h4> Pandora, a stereo matching framework</h4>
[](https://www.python.org/downloads/release/python-390/)
[](CONTRIBUTING.md)
[](https://opensource.org/licenses/Apache-2.0/)
[](https://pandora.readthedocs.io/)
[](https://github.com/CNES/Pandora/actions)
[](https://codecov.io/gh/CNES/Pandora)
[](https://mybinder.org/v2/gh/CNES/Pandora/master)
<p>
<a href="#overview">Overview</a> •
<a href="#install">Install</a> •
<a href="#quick-start">Quick Start</a> •
<a href="#Documentation">Documentation</a> •
<a href="#credits">Credits</a> •
<a href="#related">Related</a> •
<a href="#references">References</a>
</p>
</div>
## Overview
From stereo rectified images to disparity map | Pandora is working with cost volumes
:-------------------------:|:-------------------------:
 | 
Pandora is a stereo matching flexible framework made for research and production with state of the art performances:
- Inspired from the (Scharstein et al., 2002) modular taxonomy, it allows one to emulate, analyse and hopefully improve state of the art stereo algorithms with a few lines of code.
- For production purpose, Pandora have been created for the CNES & Airbus <a href="https://co3d.cnes.fr/en/co3d-0">CO3D project</a> processing chain, as [CARS](https://github.com/CNES/CARS) core stereo matching tool.
The tool is open for contributions, contact us to pandora AT cnes.fr !
## Install
Pandora is available on Pypi and can be installed by:
```bash
pip install pandora
```
For stereo reconstruction, install pandora **with** following plugins:
```bash
# SGM regularization
pip install pandora[sgm]
# MCCNN AI matching cost capability (heavy!)
pip install pandora[mccnn]
```
## Quick Start
```bash
# Download configuration file
wget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/json_conf_files/a_local_block_matching.json
# Download data samples
wget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/images/cones.zip
# Uncompress data
unzip cones.zip
# Run pandora
pandora a_local_block_matching.json output_dir
# Left and right disparity maps are saved in output_dir: left_disparity.tif and right_disparity.tif
```
## Documentation
To go further, please consult [our online documentation](https://pandora.readthedocs.io/).
## Credits
- *Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, 47(1-3), 7-42.*
- *Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. (Vol. 1, pp. I-I).*
- *2003 Middleburry dataset (D. Scharstein & R. Szeliski, 2003).*
## Related
[Plugin_LibSGM](https://github.com/CNES/pandora_plugin_libsgm) - Stereo Matching Algorithm plugin for Pandora
[Plugin_MC-CNN](https://github.com/CNES/pandora_plugin_mccnn) - MC-CNN Neural Network plugin for Pandora
[Pandora2D](https://github.com/CNES/Pandora2D) - CNES Image Registration framework based on Pandora, with 2D disparity maps.
[CARS](https://github.com/CNES/CARS) - CNES 3D reconstruction software
## References
Please cite the following papers when using Pandora:
- *Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., Fardet, Q., 2020. Ground-truth generation and disparity estimation for optical satellite imagery. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.*
- *Youssefi D., Michel, J., Sarrazin, E., Buffe, F., Cournet, M., Delvit, J., L’Helguen, C., Melet, O., Emilien, A., Bosman, J., 2020. Cars: A photogrammetry pipeline using dask graphs to construct a global 3d model. IGARSS - IEEE International Geoscience and Remote Sensing Symposium.*
Raw data
{
"_id": null,
"home_page": null,
"name": "pandora",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "CNES",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/f6/fa/6277e7cbb7746236aeeda4e6fd0f95aba66101b4e95677a19e43eddb0c84/pandora-1.7.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n<a target=\"_blank\" href=\"https://github.com/CNES/pandora\">\n<picture>\n <img\n src=\"https://raw.githubusercontent.com/CNES/Pandora/master/docs/source/Images/logo/logo_typo_large.png?inline=false\"\"\n alt=\"Pandora\"\n width=\"40%\"\n />\n</picture>\n</a>\n\n<h4> Pandora, a stereo matching framework</h4>\n\n[](https://www.python.org/downloads/release/python-390/)\n[](CONTRIBUTING.md)\n[](https://opensource.org/licenses/Apache-2.0/)\n[](https://pandora.readthedocs.io/)\n[](https://github.com/CNES/Pandora/actions)\n[](https://codecov.io/gh/CNES/Pandora)\n[](https://mybinder.org/v2/gh/CNES/Pandora/master)\n\n<p>\n <a href=\"#overview\">Overview</a> \u2022\n <a href=\"#install\">Install</a> \u2022\n <a href=\"#quick-start\">Quick Start</a> \u2022\n <a href=\"#Documentation\">Documentation</a> \u2022\n <a href=\"#credits\">Credits</a> \u2022\n <a href=\"#related\">Related</a> \u2022\n <a href=\"#references\">References</a>\n</p>\n\n</div>\n\n## Overview\n\nFrom stereo rectified images to disparity map | Pandora is working with cost volumes\n:-------------------------:|:-------------------------:\n | \n\nPandora is a stereo matching flexible framework made for research and production with state of the art performances:\n\n- Inspired from the (Scharstein et al., 2002) modular taxonomy, it allows one to emulate, analyse and hopefully improve state of the art stereo algorithms with a few lines of code.\n- For production purpose, Pandora have been created for the CNES & Airbus <a href=\"https://co3d.cnes.fr/en/co3d-0\">CO3D project</a> processing chain, as [CARS](https://github.com/CNES/CARS) core stereo matching tool.\n\nThe tool is open for contributions, contact us to pandora AT cnes.fr !\n\n## Install\n\nPandora is available on Pypi and can be installed by:\n\n```bash\npip install pandora\n```\n\nFor stereo reconstruction, install pandora **with** following plugins:\n\n```bash\n# SGM regularization\npip install pandora[sgm]\n# MCCNN AI matching cost capability (heavy!)\npip install pandora[mccnn]\n```\n\n## Quick Start\n\n```bash\n\n# Download configuration file\nwget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/json_conf_files/a_local_block_matching.json\n\n# Download data samples\nwget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/images/cones.zip\n\n# Uncompress data\nunzip cones.zip\n\n# Run pandora\npandora a_local_block_matching.json output_dir\n\n# Left and right disparity maps are saved in output_dir: left_disparity.tif and right_disparity.tif\n```\n\n## Documentation\n\nTo go further, please consult [our online documentation](https://pandora.readthedocs.io/).\n\n## Credits\n\n- *Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, 47(1-3), 7-42.* \n- *Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. (Vol. 1, pp. I-I).*\n- *2003 Middleburry dataset (D. Scharstein & R. Szeliski, 2003).*\n\n## Related\n\n[Plugin_LibSGM](https://github.com/CNES/pandora_plugin_libsgm) - Stereo Matching Algorithm plugin for Pandora \n[Plugin_MC-CNN](https://github.com/CNES/pandora_plugin_mccnn) - MC-CNN Neural Network plugin for Pandora \n[Pandora2D](https://github.com/CNES/Pandora2D) - CNES Image Registration framework based on Pandora, with 2D disparity maps.\n[CARS](https://github.com/CNES/CARS) - CNES 3D reconstruction software\n\n## References\n\nPlease cite the following papers when using Pandora:\n\n- *Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., Fardet, Q., 2020. Ground-truth generation and disparity estimation for optical satellite imagery. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.*\n- *Youssefi D., Michel, J., Sarrazin, E., Buffe, F., Cournet, M., Delvit, J., L\u2019Helguen, C., Melet, O., Emilien, A., Bosman, J., 2020. Cars: A photogrammetry pipeline using dask graphs to construct a global 3d model. IGARSS - IEEE International Geoscience and Remote Sensing Symposium.*\n",
"bugtrack_url": null,
"license": null,
"summary": "Pandora is a stereo matching framework that helps emulate state of the art algorithms",
"version": "1.7.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "fe29460a9734f680d1966dd24b5960d94348a4edfcda3baea15389ad51385375",
"md5": "5f69e36bc1d89ef459fec4f8b4d3952e",
"sha256": "4e2868c6cd9d994535ea6fbfe946725b8a57c31a2060bcc654cd8674b13df309"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5f69e36bc1d89ef459fec4f8b4d3952e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1120727,
"upload_time": "2025-09-04T10:10:38",
"upload_time_iso_8601": "2025-09-04T10:10:38.678893Z",
"url": "https://files.pythonhosted.org/packages/fe/29/460a9734f680d1966dd24b5960d94348a4edfcda3baea15389ad51385375/pandora-1.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a71dec5c4f6be853b6d16ae29c09cf3e4e6dea5bffd034345d75ad128e871506",
"md5": "2339325243eddcaee7097c45b00c2a66",
"sha256": "24a8d252a32e0e2e2d5afc6e768574db89d7474efad02406075721adac9acc84"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "2339325243eddcaee7097c45b00c2a66",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1780662,
"upload_time": "2025-09-04T10:10:40",
"upload_time_iso_8601": "2025-09-04T10:10:40.755119Z",
"url": "https://files.pythonhosted.org/packages/a7/1d/ec5c4f6be853b6d16ae29c09cf3e4e6dea5bffd034345d75ad128e871506/pandora-1.7.1-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d98aa5182f7e2ca8f8c7eade56789bacc66e1c21b1398e48f0145a7c8eb270c4",
"md5": "b512b69b76816eedf4c20d8051192961",
"sha256": "71f5c7752ce66b5b6379db05dec2e7551fb59a2acc47ce8412f5caab5dc6733e"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "b512b69b76816eedf4c20d8051192961",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1129956,
"upload_time": "2025-09-04T10:10:42",
"upload_time_iso_8601": "2025-09-04T10:10:42.706077Z",
"url": "https://files.pythonhosted.org/packages/d9/8a/a5182f7e2ca8f8c7eade56789bacc66e1c21b1398e48f0145a7c8eb270c4/pandora-1.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "017e79e2770a24921f62aed3c3c1d7e568f65805c567951c81d0c64cecee9023",
"md5": "a66ce43f461ab3ed56b921a0fd27dcfe",
"sha256": "a26a1c6989397ee6b8c9733f0ac43b98da6c22c3eac0431affe99f1dd5b80b37"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "a66ce43f461ab3ed56b921a0fd27dcfe",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1792651,
"upload_time": "2025-09-04T10:10:44",
"upload_time_iso_8601": "2025-09-04T10:10:44.511859Z",
"url": "https://files.pythonhosted.org/packages/01/7e/79e2770a24921f62aed3c3c1d7e568f65805c567951c81d0c64cecee9023/pandora-1.7.1-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6eab59780089580333852bf62d24eacec8df2bef94bf748f8f75fd9e90627053",
"md5": "74c08fc383f8e1fae7294774c00e95d0",
"sha256": "9f4368ad0b4b15938118fd4df6cda5af3658e04b29a09e7fce6a6269d457739b"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "74c08fc383f8e1fae7294774c00e95d0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1133677,
"upload_time": "2025-09-04T10:10:46",
"upload_time_iso_8601": "2025-09-04T10:10:46.045847Z",
"url": "https://files.pythonhosted.org/packages/6e/ab/59780089580333852bf62d24eacec8df2bef94bf748f8f75fd9e90627053/pandora-1.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2f3a7974879d4f1b64fddeea5e326c6896ecc24c8001c22a8d834bdd3dbf0d3a",
"md5": "0680b229bd24e666421699f080133ed5",
"sha256": "d0584b8d224795a2b1144f91e3b6324dedb529c1292df492993cf5b7cafbe1f8"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "0680b229bd24e666421699f080133ed5",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1802375,
"upload_time": "2025-09-04T10:10:47",
"upload_time_iso_8601": "2025-09-04T10:10:47.878940Z",
"url": "https://files.pythonhosted.org/packages/2f/3a/7974879d4f1b64fddeea5e326c6896ecc24c8001c22a8d834bdd3dbf0d3a/pandora-1.7.1-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "76740826b6d0e439d3b1f740b89c4c7a150dd4424e466c18290d34263a157fba",
"md5": "100b0a0e1604b8b364c6893c46ed8e04",
"sha256": "cb3dee7e4e27301e275ce5ced2c8a5adfaa13e8dd60024e9b5198c4e11a43f75"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "100b0a0e1604b8b364c6893c46ed8e04",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1135564,
"upload_time": "2025-09-04T10:10:49",
"upload_time_iso_8601": "2025-09-04T10:10:49.313000Z",
"url": "https://files.pythonhosted.org/packages/76/74/0826b6d0e439d3b1f740b89c4c7a150dd4424e466c18290d34263a157fba/pandora-1.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c024fc110e5647873b576323628cc431ed0d6ad2699315d69ff015c3d367c155",
"md5": "3df13860ab4ac31848b2adb1fedaa9f5",
"sha256": "c43a2efcf45a3369273c4bc3c9119b7765d45fbd7b6283508e120ebe0d7841ea"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "3df13860ab4ac31848b2adb1fedaa9f5",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1802643,
"upload_time": "2025-09-04T10:10:50",
"upload_time_iso_8601": "2025-09-04T10:10:50.818320Z",
"url": "https://files.pythonhosted.org/packages/c0/24/fc110e5647873b576323628cc431ed0d6ad2699315d69ff015c3d367c155/pandora-1.7.1-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eeac0b8975793aa5b21accdfbaf6b1a0a154cfc4a414b644aac696951f40d9f6",
"md5": "6118d62307b4ba214ab939c457b0fdc6",
"sha256": "3bcb639ef5f97635f615e78351ecfb742c66fedb3a441681a636c8966f2f1ad8"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6118d62307b4ba214ab939c457b0fdc6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1119287,
"upload_time": "2025-09-04T10:10:52",
"upload_time_iso_8601": "2025-09-04T10:10:52.575997Z",
"url": "https://files.pythonhosted.org/packages/ee/ac/0b8975793aa5b21accdfbaf6b1a0a154cfc4a414b644aac696951f40d9f6/pandora-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "32ab4f1fabcf350e8cc74d3f771a270071ca3c871a3fddd432c46b2eebcb305b",
"md5": "cf759903d367beefebcf64675ad1482d",
"sha256": "0c78fc8c9e32e5c5b6b022444fcab822ad0c6f2d4e2547e7207656d95291cdc4"
},
"downloads": -1,
"filename": "pandora-1.7.1-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "cf759903d367beefebcf64675ad1482d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1780756,
"upload_time": "2025-09-04T10:10:54",
"upload_time_iso_8601": "2025-09-04T10:10:54.216810Z",
"url": "https://files.pythonhosted.org/packages/32/ab/4f1fabcf350e8cc74d3f771a270071ca3c871a3fddd432c46b2eebcb305b/pandora-1.7.1-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f6fa6277e7cbb7746236aeeda4e6fd0f95aba66101b4e95677a19e43eddb0c84",
"md5": "e5b73e40befe7a8e0fc9e1ab19223837",
"sha256": "79b84fc011aa7cffbf601d4e08afc0be6d4c4db04cee657887878aefb6f9c19f"
},
"downloads": -1,
"filename": "pandora-1.7.1.tar.gz",
"has_sig": false,
"md5_digest": "e5b73e40befe7a8e0fc9e1ab19223837",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 42599366,
"upload_time": "2025-09-04T10:10:57",
"upload_time_iso_8601": "2025-09-04T10:10:57.345029Z",
"url": "https://files.pythonhosted.org/packages/f6/fa/6277e7cbb7746236aeeda4e6fd0f95aba66101b4e95677a19e43eddb0c84/pandora-1.7.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-04 10:10:57",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pandora"
}