parag


Nameparag JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/rraadd88/parag
Summaryparag: interactive visualization of higher-order graphs in Python
upload_time2024-02-25 22:50:36
maintainer
docs_urlNone
authorRohan Dandage
requires_python>=3.7
licenseApache Software License 2.0
keywords nbdev jupyter notebook python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # `parag`<a href="#"><img src="https://openmoji.org/data/color/svg/1F386.svg" align="right" width="20%"></a>

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

**Para** (beyond pairwise) **G**raph: interactive visualization of
higher-order graphs in Python

<!-- [![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url] -->
<!-- <a href="">[![PyPI](https://img.shields.io/pypi/v/parag?style=for-the-badge)![Python](https://img.shields.io/pypi/pyversions/parag?style=for-the-badge)](https://pypi.org/project/parag)</a> -->

<a href="">[<img
src="https://img.shields.io/github/actions/workflow/status/rraadd88/beditor/build.yml?style=for-the-badge"
class="quarto-discovered-preview-image" alt="build" />](https://github.com/rraadd88/parag/actions/workflows/build.yml)</a>
<a href="">[![Issues](https://img.shields.io/github/issues/rraadd88/parag.svg?style=for-the-badge)](https://github.com/rraadd88/parag/issues)</a>
<a href="">[![Downloads](https://img.shields.io/pypi/dm/parag?style=for-the-badge.png)](https://pepy.tech/project/parag)</a>
<a href="">[![GNU
License](https://img.shields.io/github/license/rraadd88/parag.svg?style=for-the-badge)](https://github.com/rraadd88/parag/blob/master/LICENSE)</a>
<a href="">[![DOI](https://img.shields.io/badge/DOI-zenodo-blue?style=for-the-badge.png)](https://doi.org//zenodo.)</a>

## Install

``` sh
pip install parag
```

## Interpretation as a hypergraph, using proportion of degrees by communities

Proportion of degrees by communities in a pairwise graph helps reveal
how nodes are grouped together and connected within different
communities. This analysis highlights clusters of nodes with strong
internal connections, potentially representing higher-order
relationships. By comparing the degree proportions within and between
communities, we can distinguish internal cohesion from inter-community
interactions. These insights aid in interpreting the graph as a
hypergraph, where communities with high intra-community connections may
signify higher-order relationships, offering a richer understanding of
complex interactions beyond simple pairwise connections.

Inspired by

> Vehlow, Corinna, Thomas Reinhardt, and Daniel Weiskopf. “Visualizing
> fuzzy overlapping communities in networks.” IEEE Transactions on
> Visualization and Computer Graphics 19.12 (2013): 2486-2495.  
> [Figure
> 9B](https://www.researchgate.net/profile/Corinna-Vehlow/publication/256837277/figure/fig4/AS:601696052985880@1520466926646/The-protein-protein-interaction-network-from-Figure-8-shown-with-our-circular-layout-a.png)

Examples:

### Gene interaction networks

``` python
from parag.hypergraph import to_net
cfg,df_=to_net(
    nodes=nodes.sort_values('Essentiality (determined from multiple datasets)'),
    edges=edges,
    col_node_id='Gene ID',
    col_source='# protein1',
    col_target='protein2',
    col_subset_id='Essentiality (determined from multiple datasets)',
    show_node_names=True,
    defaults=dict(
        radius=250,
        innerRadius=280,
        outerRadius=295,
        textSize=7,
        textOffset=3,
    ),
)
```

        <iframe
            width="100%"
            height="1000"
            src="outputs//interactions.html"
            frameborder="0"
            allowfullscreen
            &#10;        ></iframe>
        &#10;
<div>

[![](examples/outputs//interactions.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)

</div>

### Neighbourhood analysis in latent space e.g. single cell data

``` python
sc.pl.umap(adata, color="bulk_labels",title='Latent space')
```

![](index_files/figure-commonmark/cell-5-output-1.png)

``` python
from parag.core import get_net_data
nodes,edges=get_net_data(adata) ## generated network data by measuring distances in the latent space and thresholding
```

``` python
from parag.hypergraph import to_net
cfg,df_=to_net(
    nodes,
    edges,
    col_node_id='cell id',
    col_source='cell id1',
    col_target='cell id2',
    col_subset_id='bulk_labels',
    show_node_names=False,
    defaults=dict(
            textSize=8,
            textOffset=3,
    ),
)
```

        <iframe
            width="100%"
            height="1000"
            src="outputs//neighbourhoods.html"
            frameborder="0"
            allowfullscreen
            &#10;        ></iframe>
        &#10;
<div>

[![](examples/outputs//neighbourhoods.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)

</div>

### Heterogeneous graph e.g. drug side-effects network

``` python
## filter
nodes=(df02
    .loc[:,["Individual Side Effect","Side Effect Name"]]
    .log.drop_duplicates()
    .assign(
         #Side Effect type
          subset=lambda df: df['Side Effect Name'].str.split(' ',expand=True)[0],  
    )
    .drop(['Side Effect Name'],axis=1)
    .groupby('subset').filter(lambda df: len(df)>3 and len(df)<10)
    .head(5)
    .sort_values('subset')
    .log('Individual Side Effect') # id
    .log('Individual Side Effect') # name
    )
nodes.head(1)
```

<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }
&#10;    .dataframe tbody tr th {
        vertical-align: top;
    }
&#10;    .dataframe thead th {
        text-align: right;
    }
</style>

|     | Individual Side Effect | subset           |
|-----|------------------------|------------------|
| 1   | C0162830               | Photosensitivity |

</div>

``` python
edges=(
    df02
    .log.query(expr=f"`Individual Side Effect` == {nodes['Individual Side Effect'].unique().tolist()}")
    )
edges.head(1)
```

<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }
&#10;    .dataframe tbody tr th {
        vertical-align: top;
    }
&#10;    .dataframe thead th {
        text-align: right;
    }
</style>

|     | \# STITCH    | Individual Side Effect | Side Effect Name          |
|-----|--------------|------------------------|---------------------------|
| 1   | CID003062316 | C0162830               | Photosensitivity reaction |

</div>

``` python
## append drugs to nodes
nodes=pd.concat(
    [
        edges.loc[:,['# STITCH']].drop_duplicates().rename(columns={'# STITCH':'node id'},errors='raise').assign(subset='drug'),
        nodes.rename(columns={'Individual Side Effect':'node id'},errors='raise'),
    ],
    axis=0,
    )
nodes.head(1)
```

<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }
&#10;    .dataframe tbody tr th {
        vertical-align: top;
    }
&#10;    .dataframe thead th {
        text-align: right;
    }
</style>

|     | node id      | subset |
|-----|--------------|--------|
| 1   | CID003062316 | drug   |

</div>

``` python
from parag.hypergraph import to_net
cfg,df_=to_net(
    nodes,
    edges,
    col_node_id='node id',
    col_source='# STITCH',
    col_target='Individual Side Effect',
    col_subset_id='subset',
    show_node_names=False,
    defaults=dict(
        radius=200,
        innerRadius=205,
        outerRadius=235,
        textSize=9,
        textOffset=3,
        cornerRadius=3.5,
    ),
)
```

        <iframe
            width="100%"
            height="1000"
            src="outputs//heterogeneous.html"
            frameborder="0"
            allowfullscreen
            &#10;        ></iframe>
        &#10;
<div>

[![](examples/outputs//heterogeneous.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)

</div>

### Network communities

``` python
# Plot graph with colouring based on communities
fig, ax = plt.subplots(1,1, figsize=(5, 3))
visualize_communities(G, communities[3], 2)
```

![](index_files/figure-commonmark/cell-16-output-1.png)

``` python
nodes=pd.Series({i:list(t) for i,t in enumerate(communities[3])}).explode().to_frame('node id').reset_index().rename(columns={'index':'community id'}).sort_values('community id')
nodes.head(1)
```

<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }
&#10;    .dataframe tbody tr th {
        vertical-align: top;
    }
&#10;    .dataframe thead th {
        text-align: right;
    }
</style>

|     | community id | node id |
|-----|--------------|---------|
| 0   | 0            | 0       |

</div>

``` python
edges=pd.DataFrame(G.edges,columns=['source','target'])
edges.head(1)
```

<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }
&#10;    .dataframe tbody tr th {
        vertical-align: top;
    }
&#10;    .dataframe thead th {
        text-align: right;
    }
</style>

|     | source | target |
|-----|--------|--------|
| 0   | 0      | 1      |

</div>

``` python
from parag.hypergraph import to_net
cfg,df_=to_net(
    nodes.applymap(str),
    edges.applymap(str),
    col_node_id='node id',
    col_source='source',
    col_target='target',
    col_subset_id='community id',
    show_node_names=True,
    defaults=dict(
        radius=180,
        innerRadius=205,
        outerRadius=235,
        textSize=17,
        textOffset=4,
        cornerRadius=3.5,
    ),
)
```

        <iframe
            width="100%"
            height="1000"
            src="outputs//communities.html"
            frameborder="0"
            allowfullscreen
            &#10;        ></iframe>
        &#10;
<div>

[![](examples/outputs//communities.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)

</div>

## How to cite?

1.  Using BibTeX:  

<!-- -->

    @software{Dandage_parag,
      title   = {parag: interactive visualization of higher-order graphs in Python},
      author  = {Dandage, Rohan},
      year    = {2024},
      url     = {https://doi.org//zenodo.},
      version = {v0.0.1},
      note    = {The URL is a DOI link to the permanent archive of the software.},
    }

2.  DOI link:
    [![DOI](https://zenodo.org/badge/DOI//zenodo..svg)](https://doi.org//zenodo.),
    or

3.  Using citation information from [CITATION.CFF
    file](https://github.com/rraadd88/parag/blob/main/CITATION.cff).

## Future directions, for which contributions are welcome

- [ ] Showing degree counts in addition to the percentages  
- [ ] Inferring the `defaults` e.g. radii from the input data.
- [ ] Bind `rotate` signal to the hypergraph and `start/endAngle` to
  graph.  
- [ ] Set up `tidy` `layout`.
- [ ] Edge coloring by source and target nodes and setting
  `interaction`s.
- [ ] CI for quicker testing use lighter example.
- [ ] More examples

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rraadd88/parag",
    "name": "parag",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "nbdev jupyter notebook python",
    "author": "Rohan Dandage",
    "author_email": "rohanadanadge@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ad/b7/f546a72263df00e414d70086cca58515845fed945d65ea962a9cc767e70f/parag-0.0.1.tar.gz",
    "platform": null,
    "description": "# `parag`<a href=\"#\"><img src=\"https://openmoji.org/data/color/svg/1F386.svg\" align=\"right\" width=\"20%\"></a>\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n**Para** (beyond pairwise) **G**raph: interactive visualization of\nhigher-order graphs in Python\n\n<!-- [![Contributors][contributors-shield]][contributors-url]\n[![Forks][forks-shield]][forks-url]\n[![Stargazers][stars-shield]][stars-url] -->\n<!-- <a href=\"\">[![PyPI](https://img.shields.io/pypi/v/parag?style=for-the-badge)![Python](https://img.shields.io/pypi/pyversions/parag?style=for-the-badge)](https://pypi.org/project/parag)</a> -->\n\n<a href=\"\">[<img\nsrc=\"https://img.shields.io/github/actions/workflow/status/rraadd88/beditor/build.yml?style=for-the-badge\"\nclass=\"quarto-discovered-preview-image\" alt=\"build\" />](https://github.com/rraadd88/parag/actions/workflows/build.yml)</a>\n<a href=\"\">[![Issues](https://img.shields.io/github/issues/rraadd88/parag.svg?style=for-the-badge)](https://github.com/rraadd88/parag/issues)</a>\n<a href=\"\">[![Downloads](https://img.shields.io/pypi/dm/parag?style=for-the-badge.png)](https://pepy.tech/project/parag)</a>\n<a href=\"\">[![GNU\nLicense](https://img.shields.io/github/license/rraadd88/parag.svg?style=for-the-badge)](https://github.com/rraadd88/parag/blob/master/LICENSE)</a>\n<a href=\"\">[![DOI](https://img.shields.io/badge/DOI-zenodo-blue?style=for-the-badge.png)](https://doi.org//zenodo.)</a>\n\n## Install\n\n``` sh\npip install parag\n```\n\n## Interpretation as a hypergraph, using proportion of degrees by communities\n\nProportion of degrees by communities in a pairwise graph helps reveal\nhow nodes are grouped together and connected within different\ncommunities. This analysis highlights clusters of nodes with strong\ninternal connections, potentially representing higher-order\nrelationships. By comparing the degree proportions within and between\ncommunities, we can distinguish internal cohesion from inter-community\ninteractions. These insights aid in interpreting the graph as a\nhypergraph, where communities with high intra-community connections may\nsignify higher-order relationships, offering a richer understanding of\ncomplex interactions beyond simple pairwise connections.\n\nInspired by\n\n> Vehlow, Corinna, Thomas Reinhardt, and Daniel Weiskopf. \u201cVisualizing\n> fuzzy overlapping communities in networks.\u201d IEEE Transactions on\n> Visualization and Computer Graphics 19.12 (2013): 2486-2495.  \n> [Figure\n> 9B](https://www.researchgate.net/profile/Corinna-Vehlow/publication/256837277/figure/fig4/AS:601696052985880@1520466926646/The-protein-protein-interaction-network-from-Figure-8-shown-with-our-circular-layout-a.png)\n\nExamples:\n\n### Gene interaction networks\n\n``` python\nfrom parag.hypergraph import to_net\ncfg,df_=to_net(\n    nodes=nodes.sort_values('Essentiality (determined from multiple datasets)'),\n    edges=edges,\n    col_node_id='Gene ID',\n    col_source='# protein1',\n    col_target='protein2',\n    col_subset_id='Essentiality (determined from multiple datasets)',\n    show_node_names=True,\n    defaults=dict(\n        radius=250,\n        innerRadius=280,\n        outerRadius=295,\n        textSize=7,\n        textOffset=3,\n    ),\n)\n```\n\n        <iframe\n            width=\"100%\"\n            height=\"1000\"\n            src=\"outputs//interactions.html\"\n            frameborder=\"0\"\n            allowfullscreen\n            &#10;        ></iframe>\n        &#10;\n<div>\n\n[![](examples/outputs//interactions.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)\n\n</div>\n\n### Neighbourhood analysis in latent space e.g.\u00a0single cell data\n\n``` python\nsc.pl.umap(adata, color=\"bulk_labels\",title='Latent space')\n```\n\n![](index_files/figure-commonmark/cell-5-output-1.png)\n\n``` python\nfrom parag.core import get_net_data\nnodes,edges=get_net_data(adata) ## generated network data by measuring distances in the latent space and thresholding\n```\n\n``` python\nfrom parag.hypergraph import to_net\ncfg,df_=to_net(\n    nodes,\n    edges,\n    col_node_id='cell id',\n    col_source='cell id1',\n    col_target='cell id2',\n    col_subset_id='bulk_labels',\n    show_node_names=False,\n    defaults=dict(\n            textSize=8,\n            textOffset=3,\n    ),\n)\n```\n\n        <iframe\n            width=\"100%\"\n            height=\"1000\"\n            src=\"outputs//neighbourhoods.html\"\n            frameborder=\"0\"\n            allowfullscreen\n            &#10;        ></iframe>\n        &#10;\n<div>\n\n[![](examples/outputs//neighbourhoods.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)\n\n</div>\n\n### Heterogeneous graph e.g.\u00a0drug side-effects network\n\n``` python\n## filter\nnodes=(df02\n    .loc[:,[\"Individual Side Effect\",\"Side Effect Name\"]]\n    .log.drop_duplicates()\n    .assign(\n         #Side Effect type\n          subset=lambda df: df['Side Effect Name'].str.split(' ',expand=True)[0],  \n    )\n    .drop(['Side Effect Name'],axis=1)\n    .groupby('subset').filter(lambda df: len(df)>3 and len(df)<10)\n    .head(5)\n    .sort_values('subset')\n    .log('Individual Side Effect') # id\n    .log('Individual Side Effect') # name\n    )\nnodes.head(1)\n```\n\n<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n&#10;    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n&#10;    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\n|     | Individual Side Effect | subset           |\n|-----|------------------------|------------------|\n| 1   | C0162830               | Photosensitivity |\n\n</div>\n\n``` python\nedges=(\n    df02\n    .log.query(expr=f\"`Individual Side Effect` == {nodes['Individual Side Effect'].unique().tolist()}\")\n    )\nedges.head(1)\n```\n\n<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n&#10;    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n&#10;    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\n|     | \\# STITCH    | Individual Side Effect | Side Effect Name          |\n|-----|--------------|------------------------|---------------------------|\n| 1   | CID003062316 | C0162830               | Photosensitivity reaction |\n\n</div>\n\n``` python\n## append drugs to nodes\nnodes=pd.concat(\n    [\n        edges.loc[:,['# STITCH']].drop_duplicates().rename(columns={'# STITCH':'node id'},errors='raise').assign(subset='drug'),\n        nodes.rename(columns={'Individual Side Effect':'node id'},errors='raise'),\n    ],\n    axis=0,\n    )\nnodes.head(1)\n```\n\n<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n&#10;    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n&#10;    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\n|     | node id      | subset |\n|-----|--------------|--------|\n| 1   | CID003062316 | drug   |\n\n</div>\n\n``` python\nfrom parag.hypergraph import to_net\ncfg,df_=to_net(\n    nodes,\n    edges,\n    col_node_id='node id',\n    col_source='# STITCH',\n    col_target='Individual Side Effect',\n    col_subset_id='subset',\n    show_node_names=False,\n    defaults=dict(\n        radius=200,\n        innerRadius=205,\n        outerRadius=235,\n        textSize=9,\n        textOffset=3,\n        cornerRadius=3.5,\n    ),\n)\n```\n\n        <iframe\n            width=\"100%\"\n            height=\"1000\"\n            src=\"outputs//heterogeneous.html\"\n            frameborder=\"0\"\n            allowfullscreen\n            &#10;        ></iframe>\n        &#10;\n<div>\n\n[![](examples/outputs//heterogeneous.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)\n\n</div>\n\n### Network communities\n\n``` python\n# Plot graph with colouring based on communities\nfig, ax = plt.subplots(1,1, figsize=(5, 3))\nvisualize_communities(G, communities[3], 2)\n```\n\n![](index_files/figure-commonmark/cell-16-output-1.png)\n\n``` python\nnodes=pd.Series({i:list(t) for i,t in enumerate(communities[3])}).explode().to_frame('node id').reset_index().rename(columns={'index':'community id'}).sort_values('community id')\nnodes.head(1)\n```\n\n<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n&#10;    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n&#10;    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\n|     | community id | node id |\n|-----|--------------|---------|\n| 0   | 0            | 0       |\n\n</div>\n\n``` python\nedges=pd.DataFrame(G.edges,columns=['source','target'])\nedges.head(1)\n```\n\n<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n&#10;    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n&#10;    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\n|     | source | target |\n|-----|--------|--------|\n| 0   | 0      | 1      |\n\n</div>\n\n``` python\nfrom parag.hypergraph import to_net\ncfg,df_=to_net(\n    nodes.applymap(str),\n    edges.applymap(str),\n    col_node_id='node id',\n    col_source='source',\n    col_target='target',\n    col_subset_id='community id',\n    show_node_names=True,\n    defaults=dict(\n        radius=180,\n        innerRadius=205,\n        outerRadius=235,\n        textSize=17,\n        textOffset=4,\n        cornerRadius=3.5,\n    ),\n)\n```\n\n        <iframe\n            width=\"100%\"\n            height=\"1000\"\n            src=\"outputs//communities.html\"\n            frameborder=\"0\"\n            allowfullscreen\n            &#10;        ></iframe>\n        &#10;\n<div>\n\n[![](examples/outputs//communities.png)](https://rraadd88.github.io/parag#interpretation-as-a-hypergraph-using-proportion-of-degrees-by-communities)\n\n</div>\n\n## How to cite?\n\n1.  Using BibTeX:  \n\n<!-- -->\n\n    @software{Dandage_parag,\n      title   = {parag: interactive visualization of higher-order graphs in Python},\n      author  = {Dandage, Rohan},\n      year    = {2024},\n      url     = {https://doi.org//zenodo.},\n      version = {v0.0.1},\n      note    = {The URL is a DOI link to the permanent archive of the software.},\n    }\n\n2.  DOI link:\n    [![DOI](https://zenodo.org/badge/DOI//zenodo..svg)](https://doi.org//zenodo.),\n    or\n\n3.  Using citation information from [CITATION.CFF\n    file](https://github.com/rraadd88/parag/blob/main/CITATION.cff).\n\n## Future directions, for which contributions are welcome\n\n- [ ] Showing degree counts in addition to the percentages  \n- [ ] Inferring the `defaults` e.g.\u00a0radii from the input data.\n- [ ] Bind `rotate` signal to the hypergraph and `start/endAngle` to\n  graph.  \n- [ ] Set up `tidy` `layout`.\n- [ ] Edge coloring by source and target nodes and setting\n  `interaction`s.\n- [ ] CI for quicker testing use lighter example.\n- [ ] More examples\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "parag: interactive visualization of higher-order graphs in Python",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/rraadd88/parag"
    },
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "adb7f546a72263df00e414d70086cca58515845fed945d65ea962a9cc767e70f",
                "md5": "6b0af6fc6c8a7885cd8db9f837126f9b",
                "sha256": "8c005173597dcaaf3724aa62ada54158322b4082098f0b58e6f8e115a36c6e54"
            },
            "downloads": -1,
            "filename": "parag-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6b0af6fc6c8a7885cd8db9f837126f9b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 28389,
            "upload_time": "2024-02-25T22:50:36",
            "upload_time_iso_8601": "2024-02-25T22:50:36.586678Z",
            "url": "https://files.pythonhosted.org/packages/ad/b7/f546a72263df00e414d70086cca58515845fed945d65ea962a9cc767e70f/parag-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-25 22:50:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rraadd88",
    "github_project": "parag",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "parag"
}
        
Elapsed time: 4.86375s