parallel-pandas


Nameparallel-pandas JSON
Version 0.6.5 PyPI version JSON
download
home_pagehttps://github.com/dubovikmaster/parallel-pandas
SummaryParallel processing on pandas with progress bars
upload_time2025-01-12 16:43:40
maintainerNone
docs_urlNone
authorDubovik Pavel
requires_python>=3.7
licenseMIT
keywords parallel pandas progress bar parallel apply parallel groupby multiprocessing bar
VCS
bugtrack_url
requirements pandas dill tqdm psutil
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Parallel-pandas

[![PyPI version fury.io](https://badge.fury.io/py/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)
[![PyPI license](https://img.shields.io/pypi/l/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)
[![PyPI download month](https://img.shields.io/pypi/dm/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)


Makes it easy to parallelize your calculations in pandas on all your CPUs.

## Installation

```python
pip install --upgrade parallel-pandas
```

## Quickstart
```python
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=True)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))

# calculate multiple quantiles. Pandas only uses one core of CPU
%%timeit
res = df.quantile(q=[.25, .5, .95], axis=1)
```
`3.66 s ± 31.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`
```python
#p_quantile is parallel analogue of quantile methods. Can use all cores of your CPU.
%%timeit
res = df.p_quantile(q=[.25, .5, .95], axis=1)
```
`679 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`

As you can see the `p_quantile` method is **5 times faster**!

## Usage

Under the hood, **parallel-pandas** works very simply. The Dataframe or Series is split into chunks along the first or second axis. Then these chunks are passed to a pool of processes or threads where the desired method is executed on each part. At the end, the parts are concatenated to get the final result.


When initializing parallel-pandas you can specify the following options:
1. `n_cpu` - the number of cores of your CPU that you want to use (default `None` - use all cores of CPU)
2. `split_factor` - Affects the number of chunks into which the DataFrame/Series is split according to the formula `chunks_number = split_factor*n_cpu` (default 1).
3. `show_vmem` - Shows a progress bar with available RAM (default `False`)
4. `disable_pr_bar` - Disable the progress bar for parallel tasks (default `False`)

For example

```python
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=False)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 100)))
```
![](https://raw.githubusercontent.com/dubovikmaster/parallel-pandas/master/gifs/p_describe.gif)

During initialization, we specified `split_factor=4` and `n_cpu = 16`, so the DataFrame will be split into 64 chunks (in the case of the `describe` method, axis = 1) and the progress bar shows the progress for each chunk

You can parallelize any expression with pandas Dataframe. For example, let's do a z-score normalization of columns in a dataframe. Let's look at the execution time and memory consumption. Compare with synchronous execution and with Dask.DataFrame
```python
import pandas as pd
import numpy as np
from parallel_pandas import ParallelPandas
import dask.dataframe as dd
from time import monotonic

#initialize parallel-pandas
ParallelPandas.initialize(n_cpu=16, split_factor=8, disable_pr_bar=True)

# create big DataFrame
df = pd.DataFrame(np.random.random((1_000_000, 1000)))

# create dask DataFrame
ddf = dd.from_pandas(df, npartitions=128)

start = monotonic()
res=(df-df.mean())/df.std()
print(f'synchronous z-score normalization time took: {monotonic()-start:.1f} s.')
```
```python
synchronous z-score normalization time took: 21.7 s.
```
```python
#parallel-pandas
start = monotonic()
res=(df-df.p_mean())/df.p_std()
print(f'parallel z-score normalization time took: {monotonic()-start:.1f} s.')
```
```python
parallel z-score normalization time took: 11.7 s.
```
```python
#dask dataframe
start = monotonic()
res=((ddf-ddf.mean())/ddf.std()).compute()
print(f'dask parallel z-score normalization time took: {monotonic()-start:.1f} s.')
```
```python
dask parallel z-score normalization time took: 12.5 s.
```

Pay attention to memory consumption. `parallel-pandas` and `dask` use almost half as much RAM as `pandas`

![](https://raw.githubusercontent.com/dubovikmaster/parallel-pandas/master/gifs/ram_usage.png)

For some methods `parallel-pandas` is faster than `dask.DataFrame`:
```python
#dask
%%time
res = ddf.nunique().compute()
Wall time: 42.9 s

%%time
res = ddf.rolling(10).mean().compute()
Wall time: 19.1 s

#parallel-pandas
%%time
res = df.p_nunique()
Wall time: 12.9 s

%%time
res = df.rolling(10).p_mean()
Wall time: 12.5 s
```

## API

### Parallel counterparts for pandas Series methods

| methods           | parallel analogue   | executor             |
|-------------------|---------------------|----------------------|
| pd.Series.apply() | pd.Series.p_apply() | threads / processes  |
| pd.Series.map()   | pd.Series.p_map()   | threads / processes  |


### Parallel counterparts for pandas SeriesGroupBy methods

| methods                  | parallel analogue          | executor                |
|--------------------------|----------------------------|-------------------------|
| pd.SeriesGroupBy.apply() | pd.SeriesGroupBy.p_apply() | threads / processes     |

### Parallel counterparts for pandas Dataframe methods

| methods        | parallel analogue | executor            |
|----------------|-------------------|---------------------|
| df.mean()      | df.p_mean()       | threads             |
| df.min()       | df.p_min()        | threads             |
| df.max()       | df.p_max()        | threads             |
| df.median()    | df.p_max()        | threads             |
| df.kurt()      | df.p_kurt()       | threads             |
| df.skew()      | df.p_skew()       | threads             |
| df.sum()       | df.p_sum()        | threads             |
| df.prod()      | df.p_prod()       | threads             |
| df.var()       | df.p_var()        | threads             |
| df.sem()       | df.p_sem()        | threads             |
| df.std()       | df.p_std()        | threads             |
| df.cummin()    | df.p_cummin()     | threads             |
| df.cumsum()    | df.p_cumsum()     | threads             |
| df.cummax()    | df.p_cummax()     | threads             |
| df.cumprod()   | df.p_cumprod()    | threads             |
| df.apply()     | df.p_apply()      | threads / processes |
| df.applymap()  | df.p_applymap()   | processes           |
| df.replace()   | df.p_replace()    | threads             |
| df.describe()  | df.p_describe()   | threads             |
| df.nunique()   | df.p_nunique()    | threads / processes |
| df.mad()       | df.p_mad()        | threads             |
| df.idxmin()    | df.p_idxmin()     | threads             |
| df.idxmax()    | df.p_idxmax()     | threads             |
| df.rank()      | df.p_rank()       | threads             |
| df.mode()      | df.p_mode()       | threads/processes   |
| df.agg()       | df.p_agg()        | threads/processes   |
| df.aggregate() | df.p_aggregate()  | threads/processes   |
| df.quantile()  | df.p_quantile()   | threads/processes   |
| df.corr()      | df.p_corr()       | threads/processes   |

### Parallel counterparts for pandas DataframeGroupBy methods

| methods                  | parallel analogue          | executor             |
|--------------------------|----------------------------|----------------------|
| DataFrameGroupBy.apply() | DataFrameGroupBy.p_apply() | threads / processes  |

### Parallel counterparts for pandas window methods

#### Rolling

| methods                            | parallel analogue                    | executor            |
|------------------------------------|--------------------------------------|---------------------|
| pd.core.window.Rolling.apply()     | pd.core.window.Rolling.p_apply()     | threads / processes |
| pd.core.window.Rolling.min()       | pd.core.window.Rolling.p_min()       | threads / processes |
| pd.core.window.Rolling.max()       | pd.core.window.Rolling.p_max()       | threads / processes |
| pd.core.window.Rolling.mean()      | pd.core.window.Rolling.p_mean()      | threads / processes |
| pd.core.window.Rolling.sum()       | pd.core.window.Rolling.p_sum()       | threads / processes |
| pd.core.window.Rolling.var()       | pd.core.window.Rolling.p_var()       | threads / processes |
| pd.core.window.Rolling.sem()       | pd.core.window.Rolling.p_sem()       | threads / processes |
| pd.core.window.Rolling.skew()      | pd.core.window.Rolling.p_skew()      | threads / processes |
| pd.core.window.Rolling.kurt()      | pd.core.window.Rolling.p_kurt()      | threads / processes |
| pd.core.window.Rolling.median()    | pd.core.window.Rolling.p_median()    | threads / processes |
| pd.core.window.Rolling.quantile()  | pd.core.window.Rolling.p_quantile()  | threads / processes |
| pd.core.window.Rolling.rank()      | pd.core.window.Rolling.p_rank()      | threads / processes |
| pd.core.window.Rolling.agg()       | pd.core.window.Rolling.p_agg()       | threads / processes |
| pd.core.window.Rolling.aggregate() | pd.core.window.Rolling.p_aggregate() | threads / processes |


#### Window

| methods                           | parallel analogue                   | executor            |
|-----------------------------------|-------------------------------------|---------------------|
| pd.core.window.Window.mean()     | pd.core.window.Window.p_mean()     | threads / processes |
| pd.core.window.Window.sum()      | pd.core.window.Window.p_sum()      | threads / processes |
| pd.core.window.Window.var()      | pd.core.window.Window.p_var()      | threads / processes |
| pd.core.window.Window.std()      | pd.core.window.Window.p_std()      | threads / processes |


#### RollingGroupby

| methods                                   | parallel analogue                           | executor            |
|-------------------------------------------|---------------------------------------------|---------------------|
| pd.core.window.RollingGroupby.apply()     | pd.core.window.RollingGroupby.p_apply()     | threads / processes |
| pd.core.window.RollingGroupby.min()       | pd.core.window.RollingGroupby.p_min()       | threads / processes |
| pd.core.window.RollingGroupby.max()       | pd.core.window.RollingGroupby.p_max()       | threads / processes |
| pd.core.window.RollingGroupby.mean()      | pd.core.window.RollingGroupby.p_mean()      | threads / processes |
| pd.core.window.RollingGroupby.sum()       | pd.core.window.RollingGroupby.p_sum()       | threads / processes |
| pd.core.window.RollingGroupby.var()       | pd.core.window.RollingGroupby.p_var()       | threads / processes |
| pd.core.window.RollingGroupby.sem()       | pd.core.window.RollingGroupby.p_sem()       | threads / processes |
| pd.core.window.RollingGroupby.skew()      | pd.core.window.RollingGroupby.p_skew()      | threads / processes |
| pd.core.window.RollingGroupby.kurt()      | pd.core.window.RollingGroupby.p_kurt()      | threads / processes |
| pd.core.window.RollingGroupby.median()    | pd.core.window.RollingGroupby.p_median()    | threads / processes |
| pd.core.window.RollingGroupby.quantile()  | pd.core.window.RollingGroupby.p_quantile()  | threads / processes |
| pd.core.window.RollingGroupby.rank()      | pd.core.window.RollingGroupby.p_rank()      | threads / processes |
| pd.core.window.RollingGroupby.agg()       | pd.core.window.RollingGroupby.p_agg()       | threads / processes |
| pd.core.window.RollingGroupby.aggregate() | pd.core.window.RollingGroupby.p_aggregate() | threads / processes |

#### Expanding

| methods                              | parallel analogue                      | executor            |
|--------------------------------------|----------------------------------------|---------------------|
| pd.core.window.Expanding.apply()     | pd.core.window.Expanding.p_apply()     | threads / processes |
| pd.core.window.Expanding.min()       | pd.core.window.Expanding.p_min()       | threads / processes |
| pd.core.window.Expanding.max()       | pd.core.window.Expanding.p_max()       | threads / processes |
| pd.core.window.Expanding.mean()      | pd.core.window.Expanding.p_mean()      | threads / processes |
| pd.core.window.Expanding.sum()       | pd.core.window.Expanding.p_sum()       | threads / processes |
| pd.core.window.Expanding.var()       | pd.core.window.Expanding.p_var()       | threads / processes |
| pd.core.window.Expanding.sem()       | pd.core.window.Expanding.p_sem()       | threads / processes |
| pd.core.window.Expanding.skew()      | pd.core.window.Expanding.p_skew()      | threads / processes |
| pd.core.window.Expanding.kurt()      | pd.core.window.Expanding.p_kurt()      | threads / processes |
| pd.core.window.Expanding.median()    | pd.core.window.Expanding.p_median()    | threads / processes |
| pd.core.window.Expanding.quantile()  | pd.core.window.Expanding.p_quantile()  | threads / processes |
| pd.core.window.Expanding.rank()      | pd.core.window.Expanding.p_rank()      | threads / processes |
| pd.core.window.Expanding.agg()       | pd.core.window.Expanding.p_agg()       | threads / processes |
| pd.core.window.Expanding.aggregate() | pd.core.window.Expanding.p_aggregate() | threads / processes |


#### ExpandingGroupby

| methods                                     | parallel analogue                             | executor            |
|---------------------------------------------|-----------------------------------------------|---------------------|
| pd.core.window.ExpandingGroupby.apply()     | pd.core.window.ExpandingGroupby.p_apply()     | threads / processes |
| pd.core.window.ExpandingGroupby.min()       | pd.core.window.ExpandingGroupby.p_min()       | threads / processes |
| pd.core.window.ExpandingGroupby.max()       | pd.core.window.ExpandingGroupby.p_max()       | threads / processes |
| pd.core.window.ExpandingGroupby.mean()      | pd.core.window.ExpandingGroupby.p_mean()      | threads / processes |
| pd.core.window.ExpandingGroupby.sum()       | pd.core.window.ExpandingGroupby.p_sum()       | threads / processes |
| pd.core.window.ExpandingGroupby.var()       | pd.core.window.ExpandingGroupby.p_var()       | threads / processes |
| pd.core.window.ExpandingGroupby.sem()       | pd.core.window.ExpandingGroupby.p_sem()       | threads / processes |
| pd.core.window.ExpandingGroupby.skew()      | pd.core.window.ExpandingGroupby.p_skew()      | threads / processes |
| pd.core.window.ExpandingGroupby.kurt()      | pd.core.window.ExpandingGroupby.p_kurt()      | threads / processes |
| pd.core.window.ExpandingGroupby.median()    | pd.core.window.ExpandingGroupby.p_median()    | threads / processes |
| pd.core.window.ExpandingGroupby.quantile()  | pd.core.window.ExpandingGroupby.p_quantile()  | threads / processes |
| pd.core.window.ExpandingGroupby.rank()      | pd.core.window.ExpandingGroupby.p_rank()      | threads / processes |
| pd.core.window.ExpandingGroupby.agg()       | pd.core.window.ExpandingGroupby.p_agg()       | threads / processes |
| pd.core.window.ExpandingGroupby.aggregate() | pd.core.window.ExpandingGroupby.p_aggregate() | threads / processes |

### ExponentialMovingWindow

| methods                                       | parallel analogue                               | executor            |
|-----------------------------------------------|-------------------------------------------------|---------------------|
| pd.core.window.ExponentialMovingWindow.mean() | pd.core.window.ExponentialMovingWindow.p_mean() | threads / processes |
| pd.core.window.ExponentialMovingWindow.sum()  | pd.core.window.ExponentialMovingWindow.p_sum()  | threads / processes |
| pd.core.window.ExponentialMovingWindow.var()  | pd.core.window.ExponentialMovingWindow.p_var()  | threads / processes |
| pd.core.window.ExponentialMovingWindow.std()  | pd.core.window.ExponentialMovingWindow.p_std()  | threads / processes |

### ExponentialMovingWindowGroupby

| methods                                              | parallel analogue                                      | executor            |
|------------------------------------------------------|--------------------------------------------------------|---------------------|
| pd.core.window.ExponentialMovingWindowGroupby.mean() | pd.core.window.ExponentialMovingWindowGroupby.p_mean() | threads / processes |
| pd.core.window.ExponentialMovingWindowGroupby.sum()  | pd.core.window.ExponentialMovingWindowGroupby.p_sum()  | threads / processes |
| pd.core.window.ExponentialMovingWindowGroupby.var()  | pd.core.window.ExponentialMovingWindowGroupby.p_var()  | threads / processes |
| pd.core.window.ExponentialMovingWindowGroupby.std()  | pd.core.window.ExponentialMovingWindowGroupby.p_std()  | threads / processes |












            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dubovikmaster/parallel-pandas",
    "name": "parallel-pandas",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "parallel pandas, progress bar, parallel apply, parallel groupby, multiprocessing bar",
    "author": "Dubovik Pavel",
    "author_email": "geometryk@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ab/0c/b32e50a5289aa18fd41086ad20557dca6a5ea16047887b24bb13d4383d69/parallel_pandas-0.6.5.tar.gz",
    "platform": "any",
    "description": "## Parallel-pandas\n\n[![PyPI version fury.io](https://badge.fury.io/py/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)\n[![PyPI license](https://img.shields.io/pypi/l/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)\n[![PyPI download month](https://img.shields.io/pypi/dm/parallel-pandas.svg)](https://pypi.org/project/parallel-pandas/)\n\n\nMakes it easy to parallelize your calculations in pandas on all your CPUs.\n\n## Installation\n\n```python\npip install --upgrade parallel-pandas\n```\n\n## Quickstart\n```python\nimport pandas as pd\nimport numpy as np\nfrom parallel_pandas import ParallelPandas\n\n#initialize parallel-pandas\nParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=True)\n\n# create big DataFrame\ndf = pd.DataFrame(np.random.random((1_000_000, 100)))\n\n# calculate multiple quantiles. Pandas only uses one core of CPU\n%%timeit\nres = df.quantile(q=[.25, .5, .95], axis=1)\n```\n`3.66 s \u00b1 31.6 ms per loop (mean \u00b1 std. dev. of 7 runs, 1 loop each)`\n```python\n#p_quantile is parallel analogue of quantile methods. Can use all cores of your CPU.\n%%timeit\nres = df.p_quantile(q=[.25, .5, .95], axis=1)\n```\n`679 ms \u00b1 10.4 ms per loop (mean \u00b1 std. dev. of 7 runs, 1 loop each)`\n\nAs you can see the `p_quantile` method is **5 times faster**!\n\n## Usage\n\nUnder the hood, **parallel-pandas** works very simply. The Dataframe or Series is split into chunks along the first or second axis. Then these chunks are passed to a pool of processes or threads where the desired method is executed on each part. At the end, the parts are concatenated to get the final result.\n\n\nWhen initializing parallel-pandas you can specify the following options:\n1. `n_cpu` - the number of cores of your CPU that you want to use (default `None` - use all cores of CPU)\n2. `split_factor` - Affects the number of chunks into which the DataFrame/Series is split according to the formula `chunks_number = split_factor*n_cpu` (default 1).\n3. `show_vmem` - Shows a progress bar with available RAM (default `False`)\n4. `disable_pr_bar` - Disable the progress bar for parallel tasks (default `False`)\n\nFor example\n\n```python\nimport pandas as pd\nimport numpy as np\nfrom parallel_pandas import ParallelPandas\n\n#initialize parallel-pandas\nParallelPandas.initialize(n_cpu=16, split_factor=4, disable_pr_bar=False)\n\n# create big DataFrame\ndf = pd.DataFrame(np.random.random((1_000_000, 100)))\n```\n![](https://raw.githubusercontent.com/dubovikmaster/parallel-pandas/master/gifs/p_describe.gif)\n\nDuring initialization, we specified `split_factor=4` and `n_cpu = 16`, so the DataFrame will be split into 64 chunks (in the case of the `describe` method, axis = 1) and the progress bar shows the progress for each chunk\n\nYou can parallelize any expression with pandas Dataframe. For example, let's do a z-score normalization of columns in a dataframe. Let's look at the execution time and memory consumption. Compare with synchronous execution and with Dask.DataFrame\n```python\nimport pandas as pd\nimport numpy as np\nfrom parallel_pandas import ParallelPandas\nimport dask.dataframe as dd\nfrom time import monotonic\n\n#initialize parallel-pandas\nParallelPandas.initialize(n_cpu=16, split_factor=8, disable_pr_bar=True)\n\n# create big DataFrame\ndf = pd.DataFrame(np.random.random((1_000_000, 1000)))\n\n# create dask DataFrame\nddf = dd.from_pandas(df, npartitions=128)\n\nstart = monotonic()\nres=(df-df.mean())/df.std()\nprint(f'synchronous z-score normalization time took: {monotonic()-start:.1f} s.')\n```\n```python\nsynchronous z-score normalization time took: 21.7 s.\n```\n```python\n#parallel-pandas\nstart = monotonic()\nres=(df-df.p_mean())/df.p_std()\nprint(f'parallel z-score normalization time took: {monotonic()-start:.1f} s.')\n```\n```python\nparallel z-score normalization time took: 11.7 s.\n```\n```python\n#dask dataframe\nstart = monotonic()\nres=((ddf-ddf.mean())/ddf.std()).compute()\nprint(f'dask parallel z-score normalization time took: {monotonic()-start:.1f} s.')\n```\n```python\ndask parallel z-score normalization time took: 12.5 s.\n```\n\nPay attention to memory consumption. `parallel-pandas` and `dask` use almost half as much RAM as `pandas`\n\n![](https://raw.githubusercontent.com/dubovikmaster/parallel-pandas/master/gifs/ram_usage.png)\n\nFor some methods `parallel-pandas` is faster than `dask.DataFrame`:\n```python\n#dask\n%%time\nres = ddf.nunique().compute()\nWall time: 42.9 s\n\n%%time\nres = ddf.rolling(10).mean().compute()\nWall time: 19.1 s\n\n#parallel-pandas\n%%time\nres = df.p_nunique()\nWall time: 12.9 s\n\n%%time\nres = df.rolling(10).p_mean()\nWall time: 12.5 s\n```\n\n## API\n\n### Parallel counterparts for pandas Series methods\n\n| methods           | parallel analogue   | executor             |\n|-------------------|---------------------|----------------------|\n| pd.Series.apply() | pd.Series.p_apply() | threads / processes  |\n| pd.Series.map()   | pd.Series.p_map()   | threads / processes  |\n\n\n### Parallel counterparts for pandas SeriesGroupBy methods\n\n| methods                  | parallel analogue          | executor                |\n|--------------------------|----------------------------|-------------------------|\n| pd.SeriesGroupBy.apply() | pd.SeriesGroupBy.p_apply() | threads / processes     |\n\n### Parallel counterparts for pandas Dataframe methods\n\n| methods        | parallel analogue | executor            |\n|----------------|-------------------|---------------------|\n| df.mean()      | df.p_mean()       | threads             |\n| df.min()       | df.p_min()        | threads             |\n| df.max()       | df.p_max()        | threads             |\n| df.median()    | df.p_max()        | threads             |\n| df.kurt()      | df.p_kurt()       | threads             |\n| df.skew()      | df.p_skew()       | threads             |\n| df.sum()       | df.p_sum()        | threads             |\n| df.prod()      | df.p_prod()       | threads             |\n| df.var()       | df.p_var()        | threads             |\n| df.sem()       | df.p_sem()        | threads             |\n| df.std()       | df.p_std()        | threads             |\n| df.cummin()    | df.p_cummin()     | threads             |\n| df.cumsum()    | df.p_cumsum()     | threads             |\n| df.cummax()    | df.p_cummax()     | threads             |\n| df.cumprod()   | df.p_cumprod()    | threads             |\n| df.apply()     | df.p_apply()      | threads / processes |\n| df.applymap()  | df.p_applymap()   | processes           |\n| df.replace()   | df.p_replace()    | threads             |\n| df.describe()  | df.p_describe()   | threads             |\n| df.nunique()   | df.p_nunique()    | threads / processes |\n| df.mad()       | df.p_mad()        | threads             |\n| df.idxmin()    | df.p_idxmin()     | threads             |\n| df.idxmax()    | df.p_idxmax()     | threads             |\n| df.rank()      | df.p_rank()       | threads             |\n| df.mode()      | df.p_mode()       | threads/processes   |\n| df.agg()       | df.p_agg()        | threads/processes   |\n| df.aggregate() | df.p_aggregate()  | threads/processes   |\n| df.quantile()  | df.p_quantile()   | threads/processes   |\n| df.corr()      | df.p_corr()       | threads/processes   |\n\n### Parallel counterparts for pandas DataframeGroupBy methods\n\n| methods                  | parallel analogue          | executor             |\n|--------------------------|----------------------------|----------------------|\n| DataFrameGroupBy.apply() | DataFrameGroupBy.p_apply() | threads / processes  |\n\n### Parallel counterparts for pandas window methods\n\n#### Rolling\n\n| methods                            | parallel analogue                    | executor            |\n|------------------------------------|--------------------------------------|---------------------|\n| pd.core.window.Rolling.apply()     | pd.core.window.Rolling.p_apply()     | threads / processes |\n| pd.core.window.Rolling.min()       | pd.core.window.Rolling.p_min()       | threads / processes |\n| pd.core.window.Rolling.max()       | pd.core.window.Rolling.p_max()       | threads / processes |\n| pd.core.window.Rolling.mean()      | pd.core.window.Rolling.p_mean()      | threads / processes |\n| pd.core.window.Rolling.sum()       | pd.core.window.Rolling.p_sum()       | threads / processes |\n| pd.core.window.Rolling.var()       | pd.core.window.Rolling.p_var()       | threads / processes |\n| pd.core.window.Rolling.sem()       | pd.core.window.Rolling.p_sem()       | threads / processes |\n| pd.core.window.Rolling.skew()      | pd.core.window.Rolling.p_skew()      | threads / processes |\n| pd.core.window.Rolling.kurt()      | pd.core.window.Rolling.p_kurt()      | threads / processes |\n| pd.core.window.Rolling.median()    | pd.core.window.Rolling.p_median()    | threads / processes |\n| pd.core.window.Rolling.quantile()  | pd.core.window.Rolling.p_quantile()  | threads / processes |\n| pd.core.window.Rolling.rank()      | pd.core.window.Rolling.p_rank()      | threads / processes |\n| pd.core.window.Rolling.agg()       | pd.core.window.Rolling.p_agg()       | threads / processes |\n| pd.core.window.Rolling.aggregate() | pd.core.window.Rolling.p_aggregate() | threads / processes |\n\n\n#### Window\n\n| methods                           | parallel analogue                   | executor            |\n|-----------------------------------|-------------------------------------|---------------------|\n| pd.core.window.Window.mean()     | pd.core.window.Window.p_mean()     | threads / processes |\n| pd.core.window.Window.sum()      | pd.core.window.Window.p_sum()      | threads / processes |\n| pd.core.window.Window.var()      | pd.core.window.Window.p_var()      | threads / processes |\n| pd.core.window.Window.std()      | pd.core.window.Window.p_std()      | threads / processes |\n\n\n#### RollingGroupby\n\n| methods                                   | parallel analogue                           | executor            |\n|-------------------------------------------|---------------------------------------------|---------------------|\n| pd.core.window.RollingGroupby.apply()     | pd.core.window.RollingGroupby.p_apply()     | threads / processes |\n| pd.core.window.RollingGroupby.min()       | pd.core.window.RollingGroupby.p_min()       | threads / processes |\n| pd.core.window.RollingGroupby.max()       | pd.core.window.RollingGroupby.p_max()       | threads / processes |\n| pd.core.window.RollingGroupby.mean()      | pd.core.window.RollingGroupby.p_mean()      | threads / processes |\n| pd.core.window.RollingGroupby.sum()       | pd.core.window.RollingGroupby.p_sum()       | threads / processes |\n| pd.core.window.RollingGroupby.var()       | pd.core.window.RollingGroupby.p_var()       | threads / processes |\n| pd.core.window.RollingGroupby.sem()       | pd.core.window.RollingGroupby.p_sem()       | threads / processes |\n| pd.core.window.RollingGroupby.skew()      | pd.core.window.RollingGroupby.p_skew()      | threads / processes |\n| pd.core.window.RollingGroupby.kurt()      | pd.core.window.RollingGroupby.p_kurt()      | threads / processes |\n| pd.core.window.RollingGroupby.median()    | pd.core.window.RollingGroupby.p_median()    | threads / processes |\n| pd.core.window.RollingGroupby.quantile()  | pd.core.window.RollingGroupby.p_quantile()  | threads / processes |\n| pd.core.window.RollingGroupby.rank()      | pd.core.window.RollingGroupby.p_rank()      | threads / processes |\n| pd.core.window.RollingGroupby.agg()       | pd.core.window.RollingGroupby.p_agg()       | threads / processes |\n| pd.core.window.RollingGroupby.aggregate() | pd.core.window.RollingGroupby.p_aggregate() | threads / processes |\n\n#### Expanding\n\n| methods                              | parallel analogue                      | executor            |\n|--------------------------------------|----------------------------------------|---------------------|\n| pd.core.window.Expanding.apply()     | pd.core.window.Expanding.p_apply()     | threads / processes |\n| pd.core.window.Expanding.min()       | pd.core.window.Expanding.p_min()       | threads / processes |\n| pd.core.window.Expanding.max()       | pd.core.window.Expanding.p_max()       | threads / processes |\n| pd.core.window.Expanding.mean()      | pd.core.window.Expanding.p_mean()      | threads / processes |\n| pd.core.window.Expanding.sum()       | pd.core.window.Expanding.p_sum()       | threads / processes |\n| pd.core.window.Expanding.var()       | pd.core.window.Expanding.p_var()       | threads / processes |\n| pd.core.window.Expanding.sem()       | pd.core.window.Expanding.p_sem()       | threads / processes |\n| pd.core.window.Expanding.skew()      | pd.core.window.Expanding.p_skew()      | threads / processes |\n| pd.core.window.Expanding.kurt()      | pd.core.window.Expanding.p_kurt()      | threads / processes |\n| pd.core.window.Expanding.median()    | pd.core.window.Expanding.p_median()    | threads / processes |\n| pd.core.window.Expanding.quantile()  | pd.core.window.Expanding.p_quantile()  | threads / processes |\n| pd.core.window.Expanding.rank()      | pd.core.window.Expanding.p_rank()      | threads / processes |\n| pd.core.window.Expanding.agg()       | pd.core.window.Expanding.p_agg()       | threads / processes |\n| pd.core.window.Expanding.aggregate() | pd.core.window.Expanding.p_aggregate() | threads / processes |\n\n\n#### ExpandingGroupby\n\n| methods                                     | parallel analogue                             | executor            |\n|---------------------------------------------|-----------------------------------------------|---------------------|\n| pd.core.window.ExpandingGroupby.apply()     | pd.core.window.ExpandingGroupby.p_apply()     | threads / processes |\n| pd.core.window.ExpandingGroupby.min()       | pd.core.window.ExpandingGroupby.p_min()       | threads / processes |\n| pd.core.window.ExpandingGroupby.max()       | pd.core.window.ExpandingGroupby.p_max()       | threads / processes |\n| pd.core.window.ExpandingGroupby.mean()      | pd.core.window.ExpandingGroupby.p_mean()      | threads / processes |\n| pd.core.window.ExpandingGroupby.sum()       | pd.core.window.ExpandingGroupby.p_sum()       | threads / processes |\n| pd.core.window.ExpandingGroupby.var()       | pd.core.window.ExpandingGroupby.p_var()       | threads / processes |\n| pd.core.window.ExpandingGroupby.sem()       | pd.core.window.ExpandingGroupby.p_sem()       | threads / processes |\n| pd.core.window.ExpandingGroupby.skew()      | pd.core.window.ExpandingGroupby.p_skew()      | threads / processes |\n| pd.core.window.ExpandingGroupby.kurt()      | pd.core.window.ExpandingGroupby.p_kurt()      | threads / processes |\n| pd.core.window.ExpandingGroupby.median()    | pd.core.window.ExpandingGroupby.p_median()    | threads / processes |\n| pd.core.window.ExpandingGroupby.quantile()  | pd.core.window.ExpandingGroupby.p_quantile()  | threads / processes |\n| pd.core.window.ExpandingGroupby.rank()      | pd.core.window.ExpandingGroupby.p_rank()      | threads / processes |\n| pd.core.window.ExpandingGroupby.agg()       | pd.core.window.ExpandingGroupby.p_agg()       | threads / processes |\n| pd.core.window.ExpandingGroupby.aggregate() | pd.core.window.ExpandingGroupby.p_aggregate() | threads / processes |\n\n### ExponentialMovingWindow\n\n| methods                                       | parallel analogue                               | executor            |\n|-----------------------------------------------|-------------------------------------------------|---------------------|\n| pd.core.window.ExponentialMovingWindow.mean() | pd.core.window.ExponentialMovingWindow.p_mean() | threads / processes |\n| pd.core.window.ExponentialMovingWindow.sum()  | pd.core.window.ExponentialMovingWindow.p_sum()  | threads / processes |\n| pd.core.window.ExponentialMovingWindow.var()  | pd.core.window.ExponentialMovingWindow.p_var()  | threads / processes |\n| pd.core.window.ExponentialMovingWindow.std()  | pd.core.window.ExponentialMovingWindow.p_std()  | threads / processes |\n\n### ExponentialMovingWindowGroupby\n\n| methods                                              | parallel analogue                                      | executor            |\n|------------------------------------------------------|--------------------------------------------------------|---------------------|\n| pd.core.window.ExponentialMovingWindowGroupby.mean() | pd.core.window.ExponentialMovingWindowGroupby.p_mean() | threads / processes |\n| pd.core.window.ExponentialMovingWindowGroupby.sum()  | pd.core.window.ExponentialMovingWindowGroupby.p_sum()  | threads / processes |\n| pd.core.window.ExponentialMovingWindowGroupby.var()  | pd.core.window.ExponentialMovingWindowGroupby.p_var()  | threads / processes |\n| pd.core.window.ExponentialMovingWindowGroupby.std()  | pd.core.window.ExponentialMovingWindowGroupby.p_std()  | threads / processes |\n\n\n\n\n\n\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Parallel processing on pandas with progress bars",
    "version": "0.6.5",
    "project_urls": {
        "Homepage": "https://github.com/dubovikmaster/parallel-pandas"
    },
    "split_keywords": [
        "parallel pandas",
        " progress bar",
        " parallel apply",
        " parallel groupby",
        " multiprocessing bar"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3153c995e6aff89992c482430ead326a414d9a16da3724c54f3c432d3e76c5d3",
                "md5": "7e2f49c28eb6104a1d2893ff58b23a86",
                "sha256": "4c1a801f18e374cf874b3a71f03125b79cc00d510b07edb64af057d8b0932fb2"
            },
            "downloads": -1,
            "filename": "parallel_pandas-0.6.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7e2f49c28eb6104a1d2893ff58b23a86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 21556,
            "upload_time": "2025-01-12T16:43:38",
            "upload_time_iso_8601": "2025-01-12T16:43:38.699555Z",
            "url": "https://files.pythonhosted.org/packages/31/53/c995e6aff89992c482430ead326a414d9a16da3724c54f3c432d3e76c5d3/parallel_pandas-0.6.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ab0cb32e50a5289aa18fd41086ad20557dca6a5ea16047887b24bb13d4383d69",
                "md5": "ab1b2ed13f22e3862f56c8638a0d5f6c",
                "sha256": "0fdef095bddcac943eab5170a6a39f895ce80e0f07da6dacd16cd3f78c1ea3e1"
            },
            "downloads": -1,
            "filename": "parallel_pandas-0.6.5.tar.gz",
            "has_sig": false,
            "md5_digest": "ab1b2ed13f22e3862f56c8638a0d5f6c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 21045,
            "upload_time": "2025-01-12T16:43:40",
            "upload_time_iso_8601": "2025-01-12T16:43:40.344173Z",
            "url": "https://files.pythonhosted.org/packages/ab/0c/b32e50a5289aa18fd41086ad20557dca6a5ea16047887b24bb13d4383d69/parallel_pandas-0.6.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-12 16:43:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dubovikmaster",
    "github_project": "parallel-pandas",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "dill",
            "specs": [
                [
                    ">=",
                    "0.3.5.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.64.0"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    ">=",
                    "5.9.1"
                ]
            ]
        }
    ],
    "lcname": "parallel-pandas"
}
        
Elapsed time: 0.40724s