# TTL Cache
A function-level memory cache that supports Time To Live (TTL).
- **Per-function argument caching**: Caching is possible based on the data passed to function arguments. The cache key is composed of the function name, argument names, and the values of the arguments.
- **Automatic expiration**: Cached data expires and is automatically deleted after the specified TTL (in seconds).
- **LRU policy**: When the cache exceeds its maximum size (`max_size`), the Least Recently Used (LRU) policy is applied to delete items.
- **Easy application**: Simply add the `@TtlCache(ttl=seconds)` decorator to the function you want to cache.
## Parameters:
- **ttl**: TTL for the cached data (in seconds).
- **max_size**: Maximum number of cache entries.
- **applying_params**: List of parameter names to use as the cache key. If `None`, all parameters are used. If `[]`, only the function name is used.
## Member Functions:
- **force_expire(key)**: Forces expiration of the cache entry for the specified key.
- **is_exist(key)**: Checks if a specific key exists in the cache.
- **get_item(key)**: Returns the cache item for the specified key.
- *Note*: The key can include partial elements of the cache key.
## Usage:
1. Install the package using `pip install parametric-ttl-cache`.
2. Import the `TtlCache` class `from parametric_ttl_cache.ttl_cache import TtlCache`.
2. Add the `@TtlCache(ttl=seconds)` decorator to the function you want to cache.
3. Cache keys are generated in the format `"{class_name.}method_name(param1=value1, param2=value2, ...)"`.
4. To call the member functions of `TtlCache`, create an instance of `TtlCache` and use that instance as the decorator.
## Source code installation:
```bash
git clone https://github.com/jogakdal/python_ttl_cache.git
cd python_ttl_cache
pip install -r requirements.txt
```
### Example:
```python
from parametric_ttl_cache.ttl_cache import TtlCache
some_cache = TtlCache(ttl=5)
@some_cache
def some_function(x):
return x * 2
@TtlCache(ttl=5, max_size=10, applying_params=['key'])
def another_function(key, value):
return f'{key} = {value}'
# Usage
result = some_function(1)
some_cache.force_expire('some_function(x=1)')
```
### Test:
```python
import unittest
import time
from parametric_ttl_cache.ttl_cache import TtlCache
class TestTtlCache(unittest.TestCase):
__increment = 0
def test_ttl_cache(self):
ttl = 2 # 2 seconds
cache = TtlCache(ttl)
def incrementer():
self.__increment += 1
return self.__increment
@cache
def func(x=1):
return x + incrementer()
self.assertEqual(func(1), 2, '첫 번 째 호출은 정상적으로 실행')
self.assertEqual(func(1), 2, '두 번 째 호출은 캐시에서 가져와야 하고 incrementer가 호출되지 않아야 함')
self.assertEqual(func(x=1), 2, '명시적인 키워드 인자도 동일한 캐시 키로 사용되어야 함')
self.assertEqual(func(), 2, '디폴트 인자와 캐시 키로 사용된 인자가 같으면 같은 캐시 키로 취급되어야 함')
self.assertEqual(func(2), 4, '인자가 다르면 다른 캐시가 생성되어야 함')
# 캐시 expire
time.sleep(ttl + 1)
self.assertEqual(func(1), 4, '캐시가 expire 되었으므로 incrementer가 호출되어야 함')
self.assertEqual(func(1), 4, '이 전 호출에서 캐시가 다시 생성되어야 함')
# 캐시 강제 expire
cache.force_expire('x=1')
self.assertEqual(func(1), 5, '강제로 캐시를 expire시키면 incrementer가 호출되어야 함')
if __name__ == '__main__':
unittest.main()
```
Raw data
{
"_id": null,
"home_page": "https://github.com/jogakdal/python_ttl_cache",
"name": "parametric-ttl-cache",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "cache, memory cache, ttl cache, function cache, cache decorator, parametric cache, jogakdal",
"author": "Yongho Hwang",
"author_email": "jogakdal@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/bb/d6/0424a4bb1adb8b395187273c49e9b65fd3097661211ca3f3c1296b27ceb2/parametric-ttl-cache-1.0.2.tar.gz",
"platform": null,
"description": "# TTL Cache\n\nA function-level memory cache that supports Time To Live (TTL).\n\n- **Per-function argument caching**: Caching is possible based on the data passed to function arguments. The cache key is composed of the function name, argument names, and the values of the arguments.\n- **Automatic expiration**: Cached data expires and is automatically deleted after the specified TTL (in seconds).\n- **LRU policy**: When the cache exceeds its maximum size (`max_size`), the Least Recently Used (LRU) policy is applied to delete items.\n- **Easy application**: Simply add the `@TtlCache(ttl=seconds)` decorator to the function you want to cache.\n\n## Parameters:\n\n- **ttl**: TTL for the cached data (in seconds).\n- **max_size**: Maximum number of cache entries.\n- **applying_params**: List of parameter names to use as the cache key. If `None`, all parameters are used. If `[]`, only the function name is used.\n\n## Member Functions:\n\n- **force_expire(key)**: Forces expiration of the cache entry for the specified key.\n- **is_exist(key)**: Checks if a specific key exists in the cache.\n- **get_item(key)**: Returns the cache item for the specified key.\n - *Note*: The key can include partial elements of the cache key.\n\n## Usage:\n1. Install the package using `pip install parametric-ttl-cache`.\n2. Import the `TtlCache` class `from parametric_ttl_cache.ttl_cache import TtlCache`.\n2. Add the `@TtlCache(ttl=seconds)` decorator to the function you want to cache.\n3. Cache keys are generated in the format `\"{class_name.}method_name(param1=value1, param2=value2, ...)\"`.\n4. To call the member functions of `TtlCache`, create an instance of `TtlCache` and use that instance as the decorator.\n\n## Source code installation:\n```bash\ngit clone https://github.com/jogakdal/python_ttl_cache.git\ncd python_ttl_cache\npip install -r requirements.txt\n```\n\n### Example:\n```python\nfrom parametric_ttl_cache.ttl_cache import TtlCache\n\n\nsome_cache = TtlCache(ttl=5)\n\n@some_cache\ndef some_function(x):\n return x * 2\n\n@TtlCache(ttl=5, max_size=10, applying_params=['key'])\ndef another_function(key, value):\n return f'{key} = {value}'\n\n# Usage\nresult = some_function(1)\nsome_cache.force_expire('some_function(x=1)')\n```\n\n### Test:\n```python\nimport unittest\nimport time\n\nfrom parametric_ttl_cache.ttl_cache import TtlCache\n\n\nclass TestTtlCache(unittest.TestCase):\n __increment = 0\n def test_ttl_cache(self):\n ttl = 2 # 2 seconds\n cache = TtlCache(ttl)\n\n def incrementer():\n self.__increment += 1\n return self.__increment\n\n @cache\n def func(x=1):\n return x + incrementer()\n\n self.assertEqual(func(1), 2, '\uccab \ubc88 \uc9f8 \ud638\ucd9c\uc740 \uc815\uc0c1\uc801\uc73c\ub85c \uc2e4\ud589')\n self.assertEqual(func(1), 2, '\ub450 \ubc88 \uc9f8 \ud638\ucd9c\uc740 \uce90\uc2dc\uc5d0\uc11c \uac00\uc838\uc640\uc57c \ud558\uace0 incrementer\uac00 \ud638\ucd9c\ub418\uc9c0 \uc54a\uc544\uc57c \ud568')\n self.assertEqual(func(x=1), 2, '\uba85\uc2dc\uc801\uc778 \ud0a4\uc6cc\ub4dc \uc778\uc790\ub3c4 \ub3d9\uc77c\ud55c \uce90\uc2dc \ud0a4\ub85c \uc0ac\uc6a9\ub418\uc5b4\uc57c \ud568')\n self.assertEqual(func(), 2, '\ub514\ud3f4\ud2b8 \uc778\uc790\uc640 \uce90\uc2dc \ud0a4\ub85c \uc0ac\uc6a9\ub41c \uc778\uc790\uac00 \uac19\uc73c\uba74 \uac19\uc740 \uce90\uc2dc \ud0a4\ub85c \ucde8\uae09\ub418\uc5b4\uc57c \ud568')\n self.assertEqual(func(2), 4, '\uc778\uc790\uac00 \ub2e4\ub974\uba74 \ub2e4\ub978 \uce90\uc2dc\uac00 \uc0dd\uc131\ub418\uc5b4\uc57c \ud568')\n\n # \uce90\uc2dc expire\n time.sleep(ttl + 1)\n\n self.assertEqual(func(1), 4, '\uce90\uc2dc\uac00 expire \ub418\uc5c8\uc73c\ubbc0\ub85c incrementer\uac00 \ud638\ucd9c\ub418\uc5b4\uc57c \ud568')\n self.assertEqual(func(1), 4, '\uc774 \uc804 \ud638\ucd9c\uc5d0\uc11c \uce90\uc2dc\uac00 \ub2e4\uc2dc \uc0dd\uc131\ub418\uc5b4\uc57c \ud568')\n\n # \uce90\uc2dc \uac15\uc81c expire\n cache.force_expire('x=1')\n\n self.assertEqual(func(1), 5, '\uac15\uc81c\ub85c \uce90\uc2dc\ub97c expire\uc2dc\ud0a4\uba74 incrementer\uac00 \ud638\ucd9c\ub418\uc5b4\uc57c \ud568')\n\n\nif __name__ == '__main__':\n unittest.main()\n```\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A function-level memory cache that supports Time To Live (TTL)",
"version": "1.0.2",
"project_urls": {
"Homepage": "https://github.com/jogakdal/python_ttl_cache"
},
"split_keywords": [
"cache",
" memory cache",
" ttl cache",
" function cache",
" cache decorator",
" parametric cache",
" jogakdal"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7ef685d80dddaf94e30bfaac7e98fed7ed563c30ef0131470a54c661c0cfe2d1",
"md5": "4a34bf973b33e6750f001146715a445b",
"sha256": "36ea853b597465387c1622a94aabfd25a84bd858128186a4bbf817a16dde8c97"
},
"downloads": -1,
"filename": "parametric_ttl_cache-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4a34bf973b33e6750f001146715a445b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 4803,
"upload_time": "2025-01-20T02:17:35",
"upload_time_iso_8601": "2025-01-20T02:17:35.010370Z",
"url": "https://files.pythonhosted.org/packages/7e/f6/85d80dddaf94e30bfaac7e98fed7ed563c30ef0131470a54c661c0cfe2d1/parametric_ttl_cache-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bbd60424a4bb1adb8b395187273c49e9b65fd3097661211ca3f3c1296b27ceb2",
"md5": "7ff981ea60fb8a3ad99dc9fe88ad99ca",
"sha256": "a250cc1d9a8f02b99f1c40c55601c3b4b9948d54881a3e121c206cdb3fe86670"
},
"downloads": -1,
"filename": "parametric-ttl-cache-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "7ff981ea60fb8a3ad99dc9fe88ad99ca",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 4483,
"upload_time": "2025-01-20T02:17:36",
"upload_time_iso_8601": "2025-01-20T02:17:36.559816Z",
"url": "https://files.pythonhosted.org/packages/bb/d6/0424a4bb1adb8b395187273c49e9b65fd3097661211ca3f3c1296b27ceb2/parametric-ttl-cache-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-20 02:17:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jogakdal",
"github_project": "python_ttl_cache",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "backports-tarfile",
"specs": [
[
"==",
"1.2.0"
]
]
},
{
"name": "certifi",
"specs": [
[
"==",
"2024.6.2"
]
]
},
{
"name": "charset-normalizer",
"specs": [
[
"==",
"3.3.2"
]
]
},
{
"name": "docutils",
"specs": [
[
"==",
"0.21.2"
]
]
},
{
"name": "expiringdict",
"specs": [
[
"==",
"1.2.2"
]
]
},
{
"name": "idna",
"specs": [
[
"==",
"3.7"
]
]
},
{
"name": "importlib-metadata",
"specs": [
[
"==",
"7.1.0"
]
]
},
{
"name": "jaraco-classes",
"specs": [
[
"==",
"3.4.0"
]
]
},
{
"name": "jaraco-context",
"specs": [
[
"==",
"5.3.0"
]
]
},
{
"name": "jaraco-functools",
"specs": [
[
"==",
"4.0.1"
]
]
},
{
"name": "keyring",
"specs": [
[
"==",
"25.2.1"
]
]
},
{
"name": "markdown-it-py",
"specs": [
[
"==",
"3.0.0"
]
]
},
{
"name": "mdurl",
"specs": [
[
"==",
"0.1.2"
]
]
},
{
"name": "more-itertools",
"specs": [
[
"==",
"10.3.0"
]
]
},
{
"name": "nh3",
"specs": [
[
"==",
"0.2.17"
]
]
},
{
"name": "pkginfo",
"specs": [
[
"==",
"1.11.1"
]
]
},
{
"name": "pygments",
"specs": [
[
"==",
"2.18.0"
]
]
},
{
"name": "readme-renderer",
"specs": [
[
"==",
"43.0"
]
]
},
{
"name": "requests",
"specs": [
[
"==",
"2.32.3"
]
]
},
{
"name": "requests-toolbelt",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "rfc3986",
"specs": [
[
"==",
"2.0.0"
]
]
},
{
"name": "rich",
"specs": [
[
"==",
"13.7.1"
]
]
},
{
"name": "twine",
"specs": [
[
"==",
"5.1.0"
]
]
},
{
"name": "urllib3",
"specs": [
[
"==",
"2.2.2"
]
]
},
{
"name": "wheel",
"specs": [
[
"==",
"0.43.0"
]
]
},
{
"name": "zipp",
"specs": [
[
"==",
"3.19.2"
]
]
}
],
"lcname": "parametric-ttl-cache"
}