parametricGarch


NameparametricGarch JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/chideraani/ParametricGarch
SummaryParametric Bootstrapping via the GARCH model
upload_time2023-07-11 09:04:27
maintainer
docs_urlNone
authorChidera
requires_python
licenseGNU
keywords python bootstrapping garch volatility var risk management parametric bootstrapping
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # ParametricGarch
A Python library that uses parametric bootstrapping via the GARCH model to estimate volatility and Value-at-Risk (VaR) for financial assets.

### Installation
You can install parametricGarch using pip:
```
pip install parametricGarch
```

## Dependencies
The package dependencies are:
- arch
- numpy
- pandas
- scipy

## Usage

To get started with parametricGarch, import the necessary modules and create an instance of the `Garch` class:

```python
from parametricGarch import Garch

# Create an instance of the Garch class to fit and forecast the model
model = Garch(data, vol='Garch', p=1, q=1, dist='normal', update_freq=0, disp='off', horizon=1, start=None, reindex=False)

# View the summary of the fitted model
model.summary

# View the conditional volatility of the fitted model
model.conditional_volatility

# View the standardised residuals of the fitted model
model.standardised_residuals

# View the forecasted conditional mean of the fitted model
model.forecast_mean

# View the forecasted conditional variance of the fitted model
model.forecast_variance

# View the forecasted conditional variance of the residuals of the fitted model
model.forecast_residual_variance

# Perform parametric bootstrapping
model.bootstrap()

# View the summary of the bootstrapped model
model.bootstrap_summary

# View the forecasted mean and volatility list from the bootstrapped model
model.bootstrap_samples

# Estimate volatility and VaR
risk_estimates = model.estimate_risk()
```

## Documentation
Please refer to the [documentation](https://parametricgarch.readthedocs.io/en/latest/index.html#) for detailed information on the available parameters, methods, and properties of the Garch class.

## Examples

Please refer to [```example.ipynb```](https://github.com/chideraani/ParametricGarch/blob/main/example.ipynb) for a detailed example to help you get started quickly with parametricGarch. The examples cover various use cases and demonstrate the library's capabilities.

## License
parametricGarch is licensed under the GNU General Public License v3.0 License. See the [LICENSE](https://github.com/chideraani/ParametricGarch/blob/main/LICENSE) file for more details.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/chideraani/ParametricGarch",
    "name": "parametricGarch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,bootstrapping,garch,volatility,VaR,risk management,parametric bootstrapping",
    "author": "Chidera",
    "author_email": "chideraani27@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/37/d3/825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf/parametricGarch-0.0.6.tar.gz",
    "platform": null,
    "description": "# ParametricGarch\nA Python library that uses parametric bootstrapping via the GARCH model to estimate volatility and Value-at-Risk (VaR) for financial assets.\n\n### Installation\nYou can install parametricGarch using pip:\n```\npip install parametricGarch\n```\n\n## Dependencies\nThe package dependencies are:\n- arch\n- numpy\n- pandas\n- scipy\n\n## Usage\n\nTo get started with parametricGarch, import the necessary modules and create an instance of the `Garch` class:\n\n```python\nfrom parametricGarch import Garch\n\n# Create an instance of the Garch class to fit and forecast the model\nmodel = Garch(data, vol='Garch', p=1, q=1, dist='normal', update_freq=0, disp='off', horizon=1, start=None, reindex=False)\n\n# View the summary of the fitted model\nmodel.summary\n\n# View the conditional volatility of the fitted model\nmodel.conditional_volatility\n\n# View the standardised residuals of the fitted model\nmodel.standardised_residuals\n\n# View the forecasted conditional mean of the fitted model\nmodel.forecast_mean\n\n# View the forecasted conditional variance of the fitted model\nmodel.forecast_variance\n\n# View the forecasted conditional variance of the residuals of the fitted model\nmodel.forecast_residual_variance\n\n# Perform parametric bootstrapping\nmodel.bootstrap()\n\n# View the summary of the bootstrapped model\nmodel.bootstrap_summary\n\n# View the forecasted mean and volatility list from the bootstrapped model\nmodel.bootstrap_samples\n\n# Estimate volatility and VaR\nrisk_estimates = model.estimate_risk()\n```\n\n## Documentation\nPlease refer to the [documentation](https://parametricgarch.readthedocs.io/en/latest/index.html#) for detailed information on the available parameters, methods, and properties of the Garch class.\n\n## Examples\n\nPlease refer to [```example.ipynb```](https://github.com/chideraani/ParametricGarch/blob/main/example.ipynb) for a detailed example to help you get started quickly with parametricGarch. The examples cover various use cases and demonstrate the library's capabilities.\n\n## License\nparametricGarch is licensed under the GNU General Public License v3.0 License. See the [LICENSE](https://github.com/chideraani/ParametricGarch/blob/main/LICENSE) file for more details.\n\n",
    "bugtrack_url": null,
    "license": "GNU",
    "summary": "Parametric Bootstrapping via the GARCH model",
    "version": "0.0.6",
    "project_urls": {
        "Homepage": "https://github.com/chideraani/ParametricGarch"
    },
    "split_keywords": [
        "python",
        "bootstrapping",
        "garch",
        "volatility",
        "var",
        "risk management",
        "parametric bootstrapping"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "faa4e1612cb2e3bc62f8a2e66da41c70b2d04f3195358552b50cdcef0b4e00ac",
                "md5": "bb7aab065d4ecf96d2e0db60b242fce0",
                "sha256": "774f2fb6126bc10a17c268800f86406a3a7e5c6b6186f3410d25d948ba6fbb07"
            },
            "downloads": -1,
            "filename": "parametricGarch-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bb7aab065d4ecf96d2e0db60b242fce0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17484,
            "upload_time": "2023-07-11T09:04:25",
            "upload_time_iso_8601": "2023-07-11T09:04:25.718640Z",
            "url": "https://files.pythonhosted.org/packages/fa/a4/e1612cb2e3bc62f8a2e66da41c70b2d04f3195358552b50cdcef0b4e00ac/parametricGarch-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "37d3825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf",
                "md5": "aa5c5c763e54dc539ec9eec5d92385b4",
                "sha256": "13c0367fac4008cc8464b5d84bd7ebef3d02ee1ee68a49bdafedfc050101f593"
            },
            "downloads": -1,
            "filename": "parametricGarch-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "aa5c5c763e54dc539ec9eec5d92385b4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17222,
            "upload_time": "2023-07-11T09:04:27",
            "upload_time_iso_8601": "2023-07-11T09:04:27.846374Z",
            "url": "https://files.pythonhosted.org/packages/37/d3/825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf/parametricGarch-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-11 09:04:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chideraani",
    "github_project": "ParametricGarch",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "parametricgarch"
}
        
Elapsed time: 1.31858s