# ParametricGarch
A Python library that uses parametric bootstrapping via the GARCH model to estimate volatility and Value-at-Risk (VaR) for financial assets.
### Installation
You can install parametricGarch using pip:
```
pip install parametricGarch
```
## Dependencies
The package dependencies are:
- arch
- numpy
- pandas
- scipy
## Usage
To get started with parametricGarch, import the necessary modules and create an instance of the `Garch` class:
```python
from parametricGarch import Garch
# Create an instance of the Garch class to fit and forecast the model
model = Garch(data, vol='Garch', p=1, q=1, dist='normal', update_freq=0, disp='off', horizon=1, start=None, reindex=False)
# View the summary of the fitted model
model.summary
# View the conditional volatility of the fitted model
model.conditional_volatility
# View the standardised residuals of the fitted model
model.standardised_residuals
# View the forecasted conditional mean of the fitted model
model.forecast_mean
# View the forecasted conditional variance of the fitted model
model.forecast_variance
# View the forecasted conditional variance of the residuals of the fitted model
model.forecast_residual_variance
# Perform parametric bootstrapping
model.bootstrap()
# View the summary of the bootstrapped model
model.bootstrap_summary
# View the forecasted mean and volatility list from the bootstrapped model
model.bootstrap_samples
# Estimate volatility and VaR
risk_estimates = model.estimate_risk()
```
## Documentation
Please refer to the [documentation](https://parametricgarch.readthedocs.io/en/latest/index.html#) for detailed information on the available parameters, methods, and properties of the Garch class.
## Examples
Please refer to [```example.ipynb```](https://github.com/chideraani/ParametricGarch/blob/main/example.ipynb) for a detailed example to help you get started quickly with parametricGarch. The examples cover various use cases and demonstrate the library's capabilities.
## License
parametricGarch is licensed under the GNU General Public License v3.0 License. See the [LICENSE](https://github.com/chideraani/ParametricGarch/blob/main/LICENSE) file for more details.
Raw data
{
"_id": null,
"home_page": "https://github.com/chideraani/ParametricGarch",
"name": "parametricGarch",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,bootstrapping,garch,volatility,VaR,risk management,parametric bootstrapping",
"author": "Chidera",
"author_email": "chideraani27@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/37/d3/825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf/parametricGarch-0.0.6.tar.gz",
"platform": null,
"description": "# ParametricGarch\nA Python library that uses parametric bootstrapping via the GARCH model to estimate volatility and Value-at-Risk (VaR) for financial assets.\n\n### Installation\nYou can install parametricGarch using pip:\n```\npip install parametricGarch\n```\n\n## Dependencies\nThe package dependencies are:\n- arch\n- numpy\n- pandas\n- scipy\n\n## Usage\n\nTo get started with parametricGarch, import the necessary modules and create an instance of the `Garch` class:\n\n```python\nfrom parametricGarch import Garch\n\n# Create an instance of the Garch class to fit and forecast the model\nmodel = Garch(data, vol='Garch', p=1, q=1, dist='normal', update_freq=0, disp='off', horizon=1, start=None, reindex=False)\n\n# View the summary of the fitted model\nmodel.summary\n\n# View the conditional volatility of the fitted model\nmodel.conditional_volatility\n\n# View the standardised residuals of the fitted model\nmodel.standardised_residuals\n\n# View the forecasted conditional mean of the fitted model\nmodel.forecast_mean\n\n# View the forecasted conditional variance of the fitted model\nmodel.forecast_variance\n\n# View the forecasted conditional variance of the residuals of the fitted model\nmodel.forecast_residual_variance\n\n# Perform parametric bootstrapping\nmodel.bootstrap()\n\n# View the summary of the bootstrapped model\nmodel.bootstrap_summary\n\n# View the forecasted mean and volatility list from the bootstrapped model\nmodel.bootstrap_samples\n\n# Estimate volatility and VaR\nrisk_estimates = model.estimate_risk()\n```\n\n## Documentation\nPlease refer to the [documentation](https://parametricgarch.readthedocs.io/en/latest/index.html#) for detailed information on the available parameters, methods, and properties of the Garch class.\n\n## Examples\n\nPlease refer to [```example.ipynb```](https://github.com/chideraani/ParametricGarch/blob/main/example.ipynb) for a detailed example to help you get started quickly with parametricGarch. The examples cover various use cases and demonstrate the library's capabilities.\n\n## License\nparametricGarch is licensed under the GNU General Public License v3.0 License. See the [LICENSE](https://github.com/chideraani/ParametricGarch/blob/main/LICENSE) file for more details.\n\n",
"bugtrack_url": null,
"license": "GNU",
"summary": "Parametric Bootstrapping via the GARCH model",
"version": "0.0.6",
"project_urls": {
"Homepage": "https://github.com/chideraani/ParametricGarch"
},
"split_keywords": [
"python",
"bootstrapping",
"garch",
"volatility",
"var",
"risk management",
"parametric bootstrapping"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "faa4e1612cb2e3bc62f8a2e66da41c70b2d04f3195358552b50cdcef0b4e00ac",
"md5": "bb7aab065d4ecf96d2e0db60b242fce0",
"sha256": "774f2fb6126bc10a17c268800f86406a3a7e5c6b6186f3410d25d948ba6fbb07"
},
"downloads": -1,
"filename": "parametricGarch-0.0.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bb7aab065d4ecf96d2e0db60b242fce0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17484,
"upload_time": "2023-07-11T09:04:25",
"upload_time_iso_8601": "2023-07-11T09:04:25.718640Z",
"url": "https://files.pythonhosted.org/packages/fa/a4/e1612cb2e3bc62f8a2e66da41c70b2d04f3195358552b50cdcef0b4e00ac/parametricGarch-0.0.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "37d3825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf",
"md5": "aa5c5c763e54dc539ec9eec5d92385b4",
"sha256": "13c0367fac4008cc8464b5d84bd7ebef3d02ee1ee68a49bdafedfc050101f593"
},
"downloads": -1,
"filename": "parametricGarch-0.0.6.tar.gz",
"has_sig": false,
"md5_digest": "aa5c5c763e54dc539ec9eec5d92385b4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 17222,
"upload_time": "2023-07-11T09:04:27",
"upload_time_iso_8601": "2023-07-11T09:04:27.846374Z",
"url": "https://files.pythonhosted.org/packages/37/d3/825b8b334f3f71e0a566840bfe80b62368a7ea660ded8c0e3cba8c5abbdf/parametricGarch-0.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-11 09:04:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "chideraani",
"github_project": "ParametricGarch",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "parametricgarch"
}