parmap


Nameparmap JSON
Version 1.7.0 PyPI version JSON
download
home_page
Summarymap and starmap implementations passing additional arguments and parallelizing if possible
upload_time2023-09-09 17:36:02
maintainer
docs_urlNone
author
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            parmap
======

.. image:: https://github.com/zeehio/parmap/actions/workflows/test.yml/badge.svg
    :target: https://github.com/zeehio/parmap/actions/workflows/test.yml

.. image:: https://img.shields.io/conda/vn/conda-forge/parmap.svg
    :target: https://anaconda.org/conda-forge/parmap
    :alt: conda-forge version

.. image:: https://readthedocs.org/projects/parmap/badge/?version=latest
    :target: https://readthedocs.org/projects/parmap/?badge=latest
    :alt: Documentation Status

.. image:: https://codecov.io/github/zeehio/parmap/coverage.svg?branch=main
    :target: https://codecov.io/github/zeehio/parmap?branch=main

.. image:: https://codeclimate.com/github/zeehio/parmap/badges/gpa.svg
   :target: https://codeclimate.com/github/zeehio/parmap
   :alt: Code Climate


This small python module implements four functions: ``map`` and
``starmap``, and their async versions ``map_async`` and ``starmap_async``.

What does parmap offer?
-----------------------

-  Provide an easy to use syntax for both ``map`` and ``starmap``.
-  Parallelize transparently whenever possible.
-  Pass additional positional and keyword arguments to parallelized functions.
-  Show a progress bar (requires `tqdm` as optional package)

Installation:
-------------

::

  pip install tqdm # for progress bar support
  pip install parmap


Usage:
------

Here are some examples with some unparallelized code parallelized with
parmap:

Simple parallelization example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

  import parmap
  # You want to do:
  mylist = [1,2,3]
  argument1 = 3.14
  argument2 = True
  y = [myfunction(x, argument1, mykeyword=argument2) for x in mylist]
  # In parallel:
  y = parmap.map(myfunction, mylist, argument1, mykeyword=argument2)


Show a progress bar:
~~~~~~~~~~~~~~~~~~~~~

Requires ``pip install tqdm``

::

  # You want to do:
  y = [myfunction(x) for x in mylist]
  # In parallel, with a progress bar
  y = parmap.map(myfunction, mylist, pm_pbar=True)
  # Passing extra options to the tqdm progress bar
  y = parmap.map(myfunction, mylist, pm_pbar={"desc": "Example"})


Passing multiple arguments:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

  # You want to do:
  z = [myfunction(x, y, argument1, argument2, mykey=argument3) for (x,y) in mylist]
  # In parallel:
  z = parmap.starmap(myfunction, mylist, argument1, argument2, mykey=argument3)

  # You want to do:
  listx = [1, 2, 3, 4, 5, 6]
  listy = [2, 3, 4, 5, 6, 7]
  param = 3.14
  param2 = 42
  listz = []
  for (x, y) in zip(listx, listy):
      listz.append(myfunction(x, y, param1, param2))
  # In parallel:
  listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)


Advanced: Multiple parallel tasks running in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In this example, Task1 uses 5 cores, while Task2 uses 3 cores. Both tasks start
to compute simultaneously, and we print a message as soon as any of the tasks
finishes, retreiving the result.

::

    import parmap
    def task1(item):
        return 2*item

    def task2(item):
        return 2*item + 1

    items1 = range(500000)
    items2 = range(500)

    with parmap.map_async(task1, items1, pm_processes=5) as result1:
        with parmap.map_async(task2, items2, pm_processes=3) as result2:
            data_task1 = None
            data_task2 = None
            task1_working = True
            task2_working = True
            while task1_working or task2_working:
                result1.wait(0.1)
                if task1_working and result1.ready():
                    print("Task 1 has finished!")
                    data_task1 = result1.get()
                    task1_working = False
                result2.wait(0.1)
                if task2_working and result2.ready():
                    print("Task 2 has finished!")
                    data_task2 = result2.get()
                    task2_working = False
    #Further work with data_task1 or data_task2


map and starmap already exist. Why reinvent the wheel?
---------------------------------------------------------

The existing functions have some usability limitations:

-  The built-in python function ``map`` [#builtin-map]_
   is not able to parallelize.
-  ``multiprocessing.Pool().map`` [#multiproc-map]_
   does not allow any additional argument to the mapped function.
-  ``multiprocessing.Pool().starmap`` allows passing multiple arguments,
   but in order to pass a constant argument to the mapped function you
   will need to convert it to an iterator using
   ``itertools.repeat(your_parameter)`` [#itertools-repeat]_

``parmap`` aims to overcome this limitations in the simplest possible way.

Additional features in parmap:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-  Create a pool for parallel computation automatically if possible.
-  ``parmap.map(..., ..., pm_parallel=False)`` # disables parallelization
-  ``parmap.map(..., ..., pm_processes=4)`` # use 4 parallel processes
-  ``parmap.map(..., ..., pm_pbar=True)`` # show a progress bar (requires tqdm)
-  ``parmap.map(..., ..., pm_pool=multiprocessing.Pool())`` # use an existing
   pool, in this case parmap will not close the pool.
-  ``parmap.map(..., ..., pm_chunksize=3)`` # size of chunks (see
   multiprocessing.Pool().map)

Limitations:
-------------

``parmap.map()`` and ``parmap.starmap()`` (and their async versions) have their own 
arguments (``pm_parallel``, ``pm_pbar``...). Those arguments are never passed
to the underlying function. In the following example, ``myfun`` will receive 
``myargument``, but not ``pm_parallel``. Do not write functions that require
keyword arguments starting with ``pm_``, as ``parmap`` may need them in the future.

::

    parmap.map(myfun, mylist, pm_parallel=True, myargument=False)

Additionally, there are other keyword arguments that should be avoided in the
functions you write, because of parmap backwards compatibility reasons. The list
of conflicting arguments is: ``parallel``, ``chunksize``, ``pool``,
``processes``, ``callback``, ``error_callback`` and ``parmap_progress``.



Acknowledgments:
----------------

This package started after `this question <https://stackoverflow.com/q/5442910/446149>`__, 
when I offered this `answer <http://stackoverflow.com/a/21292849/446149>`__, 
taking the suggestions of J.F. Sebastian for his `answer <http://stackoverflow.com/a/5443941/446149>`__

Known works using parmap
---------------------------

- Davide Gerosa, Michael Kesden, "PRECESSION. Dynamics of spinning black-hole
  binaries with python." `arXiv:1605.01067 <https://arxiv.org/abs/1605.01067>`__, 2016
- Thibault de Boissiere, `Implementation of Deep learning papers <https://github.com/tdeboissiere/DeepLearningImplementations>`__, 2017
    - Wasserstein Generative Adversarial Networks `arXiv:1701.07875 <https://arxiv.org/abs/1701.07875>`__
    - pix2pix `arXiv:1611.07004 <https://arxiv.org/abs/1611.07004>`__
    - Improved Techniques for Training Generative Adversarial Networks `arXiv:1606.03498 <https://arxiv.org/abs/1606.03498>`__
    - Colorful Image Colorization `arXiv:1603.08511 <https://arxiv.org/abs/1603.08511>`__
    - Deep Feature Interpolation for Image Content Changes `arXiv:1611.05507 <https://arxiv.org/abs/1611.05507>`__
    - InfoGAN `arXiv:1606.03657 <https://arxiv.org/abs/1606.03657>`__
- Geoscience Australia, `SIFRA, a System for Infrastructure Facility Resilience Analysis <https://github.com/GeoscienceAustralia/sifra>`__, 2017
- André F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata Walewska, Zadie Davis, Matthias Farlik, David Oscier, Christoph Bock "Chromatin accessibility maps of chronic lymphocytic leukemia identify subtype-specific epigenome signatures and transcription regulatory networks" Nat. Commun. 7:11938 doi: 10.1038/ncomms11938 (2016). `Paper <https://doi.org/10.5281/zenodo.231352>`__, `Code <https://github.com/epigen/cll-chromatin>`__


References
-----------

.. [#builtin-map] http://docs.python.org/dev/library/functions.html#map
.. [#multiproc-starmap] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.starmap
.. [#multiproc-map] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map
.. [#itertools-repeat] http://docs.python.org/dev/library/itertools.html#itertools.repeat


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "parmap",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "Sergio Oller <sergioller@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/6a/a7/440ce4b53a4918773c65077ea95136890c1037adfd87065fbb2c757ea381/parmap-1.7.0.tar.gz",
    "platform": null,
    "description": "parmap\n======\n\n.. image:: https://github.com/zeehio/parmap/actions/workflows/test.yml/badge.svg\n    :target: https://github.com/zeehio/parmap/actions/workflows/test.yml\n\n.. image:: https://img.shields.io/conda/vn/conda-forge/parmap.svg\n    :target: https://anaconda.org/conda-forge/parmap\n    :alt: conda-forge version\n\n.. image:: https://readthedocs.org/projects/parmap/badge/?version=latest\n    :target: https://readthedocs.org/projects/parmap/?badge=latest\n    :alt: Documentation Status\n\n.. image:: https://codecov.io/github/zeehio/parmap/coverage.svg?branch=main\n    :target: https://codecov.io/github/zeehio/parmap?branch=main\n\n.. image:: https://codeclimate.com/github/zeehio/parmap/badges/gpa.svg\n   :target: https://codeclimate.com/github/zeehio/parmap\n   :alt: Code Climate\n\n\nThis small python module implements four functions: ``map`` and\n``starmap``, and their async versions ``map_async`` and ``starmap_async``.\n\nWhat does parmap offer?\n-----------------------\n\n-  Provide an easy to use syntax for both ``map`` and ``starmap``.\n-  Parallelize transparently whenever possible.\n-  Pass additional positional and keyword arguments to parallelized functions.\n-  Show a progress bar (requires `tqdm` as optional package)\n\nInstallation:\n-------------\n\n::\n\n \u00a0pip install tqdm # for progress bar support\n  pip install parmap\n\n\nUsage:\n------\n\nHere are some examples with some unparallelized code parallelized with\nparmap:\n\nSimple parallelization example:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n::\n\n  import parmap\n  # You want to do:\n  mylist = [1,2,3]\n  argument1 = 3.14\n  argument2 = True\n  y = [myfunction(x, argument1, mykeyword=argument2) for x in mylist]\n  # In parallel:\n  y = parmap.map(myfunction, mylist, argument1, mykeyword=argument2)\n\n\nShow a progress bar:\n~~~~~~~~~~~~~~~~~~~~~\n\nRequires ``pip install tqdm``\n\n::\n\n  # You want to do:\n  y = [myfunction(x) for x in mylist]\n  # In parallel, with a progress bar\n  y = parmap.map(myfunction, mylist, pm_pbar=True)\n  # Passing extra options to the tqdm progress bar\n  y = parmap.map(myfunction, mylist, pm_pbar={\"desc\": \"Example\"})\n\n\nPassing multiple arguments:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n::\n\n  # You want to do:\n  z = [myfunction(x, y, argument1, argument2, mykey=argument3) for (x,y) in mylist]\n  # In parallel:\n  z = parmap.starmap(myfunction, mylist, argument1, argument2, mykey=argument3)\n\n  # You want to do:\n  listx = [1, 2, 3, 4, 5, 6]\n  listy = [2, 3, 4, 5, 6, 7]\n  param = 3.14\n  param2 = 42\n  listz = []\n  for (x, y) in zip(listx, listy):\n      listz.append(myfunction(x, y, param1, param2))\n  # In parallel:\n  listz = parmap.starmap(myfunction, zip(listx, listy), param1, param2)\n\n\nAdvanced: Multiple parallel tasks running in parallel\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIn this example, Task1 uses 5 cores, while Task2 uses 3 cores. Both tasks start\nto compute simultaneously, and we print a message as soon as any of the tasks\nfinishes, retreiving the result.\n\n::\n\n    import parmap\n    def task1(item):\n        return 2*item\n\n    def task2(item):\n        return 2*item + 1\n\n    items1 = range(500000)\n    items2 = range(500)\n\n    with parmap.map_async(task1, items1, pm_processes=5) as result1:\n        with parmap.map_async(task2, items2, pm_processes=3) as result2:\n            data_task1 = None\n            data_task2 = None\n            task1_working = True\n            task2_working = True\n            while task1_working or task2_working:\n                result1.wait(0.1)\n                if task1_working and result1.ready():\n                    print(\"Task 1 has finished!\")\n                    data_task1 = result1.get()\n                    task1_working = False\n                result2.wait(0.1)\n                if task2_working and result2.ready():\n                    print(\"Task 2 has finished!\")\n                    data_task2 = result2.get()\n                    task2_working = False\n    #Further work with data_task1 or data_task2\n\n\nmap and starmap already exist. Why reinvent the wheel?\n---------------------------------------------------------\n\nThe existing functions have some usability limitations:\n\n-  The built-in python function ``map`` [#builtin-map]_\n   is not able to parallelize.\n-  ``multiprocessing.Pool().map`` [#multiproc-map]_\n   does not allow any additional argument to the mapped function.\n-  ``multiprocessing.Pool().starmap`` allows passing multiple arguments,\n   but in order to pass a constant argument to the mapped function you\n   will need to convert it to an iterator using\n   ``itertools.repeat(your_parameter)`` [#itertools-repeat]_\n\n``parmap`` aims to overcome this limitations in the simplest possible way.\n\nAdditional features in parmap:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n-  Create a pool for parallel computation automatically if possible.\n-  ``parmap.map(..., ..., pm_parallel=False)`` # disables parallelization\n-  ``parmap.map(..., ..., pm_processes=4)`` # use 4 parallel processes\n-  ``parmap.map(..., ..., pm_pbar=True)`` # show a progress bar (requires tqdm)\n-  ``parmap.map(..., ..., pm_pool=multiprocessing.Pool())`` # use an existing\n   pool, in this case parmap will not close the pool.\n-  ``parmap.map(..., ..., pm_chunksize=3)`` # size of chunks (see\n   multiprocessing.Pool().map)\n\nLimitations:\n-------------\n\n``parmap.map()`` and ``parmap.starmap()`` (and their async versions) have their own \narguments (``pm_parallel``, ``pm_pbar``...). Those arguments are never passed\nto the underlying function. In the following example, ``myfun`` will receive \n``myargument``, but not ``pm_parallel``. Do not write functions that require\nkeyword arguments starting with ``pm_``, as ``parmap`` may need them in the future.\n\n::\n\n    parmap.map(myfun, mylist, pm_parallel=True, myargument=False)\n\nAdditionally, there are other keyword arguments that should be avoided in the\nfunctions you write, because of parmap backwards compatibility reasons. The list\nof conflicting arguments is: ``parallel``, ``chunksize``, ``pool``,\n``processes``, ``callback``, ``error_callback`` and ``parmap_progress``.\n\n\n\nAcknowledgments:\n----------------\n\nThis package started after `this question <https://stackoverflow.com/q/5442910/446149>`__, \nwhen I offered this `answer <http://stackoverflow.com/a/21292849/446149>`__, \ntaking the suggestions of J.F. Sebastian for his `answer <http://stackoverflow.com/a/5443941/446149>`__\n\nKnown works using parmap\n---------------------------\n\n- Davide Gerosa, Michael Kesden, \"PRECESSION. Dynamics of spinning black-hole\n  binaries with python.\" `arXiv:1605.01067 <https://arxiv.org/abs/1605.01067>`__, 2016\n- Thibault de Boissiere, `Implementation of Deep learning papers <https://github.com/tdeboissiere/DeepLearningImplementations>`__, 2017\n    - Wasserstein Generative Adversarial Networks `arXiv:1701.07875 <https://arxiv.org/abs/1701.07875>`__\n    - pix2pix `arXiv:1611.07004 <https://arxiv.org/abs/1611.07004>`__\n    - Improved Techniques for Training Generative Adversarial Networks `arXiv:1606.03498 <https://arxiv.org/abs/1606.03498>`__\n    - Colorful Image Colorization `arXiv:1603.08511 <https://arxiv.org/abs/1603.08511>`__\n    - Deep Feature Interpolation for Image Content Changes `arXiv:1611.05507 <https://arxiv.org/abs/1611.05507>`__\n    - InfoGAN `arXiv:1606.03657 <https://arxiv.org/abs/1606.03657>`__\n- Geoscience Australia, `SIFRA, a System for Infrastructure Facility Resilience Analysis <https://github.com/GeoscienceAustralia/sifra>`__, 2017\n- Andr\u00e9 F. Rendeiro, Christian Schmidl, Jonathan C. Strefford, Renata Walewska, Zadie Davis, Matthias Farlik, David Oscier, Christoph Bock \"Chromatin accessibility maps of chronic lymphocytic leukemia identify subtype-specific epigenome signatures and transcription regulatory networks\" Nat. Commun. 7:11938 doi: 10.1038/ncomms11938 (2016). `Paper <https://doi.org/10.5281/zenodo.231352>`__, `Code <https://github.com/epigen/cll-chromatin>`__\n\n\nReferences\n-----------\n\n.. [#builtin-map] http://docs.python.org/dev/library/functions.html#map\n.. [#multiproc-starmap] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.starmap\n.. [#multiproc-map] http://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map\n.. [#itertools-repeat] http://docs.python.org/dev/library/itertools.html#itertools.repeat\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "map and starmap implementations passing additional arguments and parallelizing if possible",
    "version": "1.7.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/zeehio/parmap/issues",
        "Homepage": "https://github.com/zeehio/parmap"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d39f820a78508ec19de9209eaaf5d1d4722c96a500de8e8d52c50ef1eca0da6",
                "md5": "f6de29b6a5877861045d8544246033cb",
                "sha256": "4953c7092442dec9560f9b25f9ff184006acd467980c00ab798f1644d432a595"
            },
            "downloads": -1,
            "filename": "parmap-1.7.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f6de29b6a5877861045d8544246033cb",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 32869,
            "upload_time": "2023-09-09T17:35:59",
            "upload_time_iso_8601": "2023-09-09T17:35:59.847671Z",
            "url": "https://files.pythonhosted.org/packages/2d/39/f820a78508ec19de9209eaaf5d1d4722c96a500de8e8d52c50ef1eca0da6/parmap-1.7.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6aa7440ce4b53a4918773c65077ea95136890c1037adfd87065fbb2c757ea381",
                "md5": "8e1d6005081d5debf507ba9fd1be500a",
                "sha256": "77c45210617c3c084e073d61e3a8111e398bbc606d4e3ec03f9a0c3aadc3f47b"
            },
            "downloads": -1,
            "filename": "parmap-1.7.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8e1d6005081d5debf507ba9fd1be500a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 22608,
            "upload_time": "2023-09-09T17:36:02",
            "upload_time_iso_8601": "2023-09-09T17:36:02.614827Z",
            "url": "https://files.pythonhosted.org/packages/6a/a7/440ce4b53a4918773c65077ea95136890c1037adfd87065fbb2c757ea381/parmap-1.7.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-09 17:36:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zeehio",
    "github_project": "parmap",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "parmap"
}
        
Elapsed time: 0.11787s