parzenpy


Nameparzenpy JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/fjornelas/parzenpy
SummaryA package for applying smoothing to frequency spectra
upload_time2024-05-24 04:01:09
maintainerNone
docs_urlNone
authorFrancisco Javier Ornelas
requires_python>=3.8
licenseNone
keywords parzen spectral smoothing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # parzenpy

A python library that perform Parzen spectral smoothing using numpy vectorized operations very efficiently.

# Background

A Parzen window also known as a Kernel Density Estimation function which was developed by Emanuel Parzen (see reference)

> E. Parzen, “Mathematical Considerations in the Estimation of Spectra”, Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-    190.

is a non-parametric estimation method that can apply smoothing by fitting a 4th order spline window to frequency spectra. In this case we apply the function to smooth Fourier Amptlitude Spectra (FAS).

# Installation
parzenpy is available using pip and can be installed with:

`pip install parzenpy`

# Usage

A user can smooth a seismic signal using a the function apply_smoothing using a bandwidth of 1.5. Larger values will return greater smoothing

`import parzenpy
smooth_fas = parzenpy.apply_smooth(freq, fft, fc, b=1.5, windowed_flag=True)`

# Citation

>Francisco-Javier Ornelas. (2024). fjornelas/parzenpy: latest(concept). Zenodo. (waiting on DOI)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fjornelas/parzenpy",
    "name": "parzenpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "parzen spectral smoothing",
    "author": "Francisco Javier Ornelas",
    "author_email": "jornela1@g.ucla.edu",
    "download_url": "https://files.pythonhosted.org/packages/ff/14/64650f61da16aa48a9b0d0a8bd4bcbbba42523c7925f790d9aa9ab2f7ab4/parzenpy-1.0.0.tar.gz",
    "platform": null,
    "description": "# parzenpy\r\n\r\nA python library that perform Parzen spectral smoothing using numpy vectorized operations very efficiently.\r\n\r\n# Background\r\n\r\nA Parzen window also known as a Kernel Density Estimation function which was developed by Emanuel Parzen (see reference)\r\n\r\n> E. Parzen, \u201cMathematical Considerations in the Estimation of Spectra\u201d, Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-    190.\r\n\r\nis a non-parametric estimation method that can apply smoothing by fitting a 4th order spline window to frequency spectra. In this case we apply the function to smooth Fourier Amptlitude Spectra (FAS).\r\n\r\n# Installation\r\nparzenpy is available using pip and can be installed with:\r\n\r\n`pip install parzenpy`\r\n\r\n# Usage\r\n\r\nA user can smooth a seismic signal using a the function apply_smoothing using a bandwidth of 1.5. Larger values will return greater smoothing\r\n\r\n`import parzenpy\r\nsmooth_fas = parzenpy.apply_smooth(freq, fft, fc, b=1.5, windowed_flag=True)`\r\n\r\n# Citation\r\n\r\n>Francisco-Javier Ornelas. (2024). fjornelas/parzenpy: latest(concept). Zenodo. (waiting on DOI)\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package for applying smoothing to frequency spectra",
    "version": "1.0.0",
    "project_urls": {
        "Bug Reports": "https://github.com/fjornelas/parzenpy/issues",
        "Homepage": "https://github.com/fjornelas/parzenpy",
        "Source": "https://github.com/fjornelas/parzenpy"
    },
    "split_keywords": [
        "parzen",
        "spectral",
        "smoothing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1ae11fb9be77b5d74bb97d3c9ec63369b6eaa1e832836ec543a6f26c48944c03",
                "md5": "ae5cf6f14a4f466ec353e6e0d6051ab7",
                "sha256": "b7799ad20b68c2c06f65ea7cfbc23069588e76a207db38aac273ccf117baa657"
            },
            "downloads": -1,
            "filename": "parzenpy-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ae5cf6f14a4f466ec353e6e0d6051ab7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 15664,
            "upload_time": "2024-05-24T04:01:08",
            "upload_time_iso_8601": "2024-05-24T04:01:08.599538Z",
            "url": "https://files.pythonhosted.org/packages/1a/e1/1fb9be77b5d74bb97d3c9ec63369b6eaa1e832836ec543a6f26c48944c03/parzenpy-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff1464650f61da16aa48a9b0d0a8bd4bcbbba42523c7925f790d9aa9ab2f7ab4",
                "md5": "abcd4135b42e80607fbc3cc46e794fe4",
                "sha256": "6867203ba2b618e2b92d4f0f557cf46d3615c113d0dbdaf7e46193c46035bebf"
            },
            "downloads": -1,
            "filename": "parzenpy-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "abcd4135b42e80607fbc3cc46e794fe4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 15507,
            "upload_time": "2024-05-24T04:01:09",
            "upload_time_iso_8601": "2024-05-24T04:01:09.907306Z",
            "url": "https://files.pythonhosted.org/packages/ff/14/64650f61da16aa48a9b0d0a8bd4bcbbba42523c7925f790d9aa9ab2f7ab4/parzenpy-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-24 04:01:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fjornelas",
    "github_project": "parzenpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "parzenpy"
}
        
Elapsed time: 4.46678s