Name | passagemath-categories JSON |
Version |
10.6.22
JSON |
| download |
home_page | None |
Summary | passagemath: Sage categories and basic rings |
upload_time | 2025-09-14 11:18:22 |
maintainer | Matthias Köppe, passagemath contributors |
docs_url | None |
author | None |
requires_python | <3.14,>=3.10 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
=========================================================================
passagemath: Sage categories, basic rings, polynomials, functions
=========================================================================
`passagemath <https://github.com/passagemath/passagemath>`__ is open
source mathematical software in Python, released under the GNU General
Public Licence GPLv2+.
It is a fork of `SageMath <https://www.sagemath.org/>`__, which has been
developed 2005-2025 under the motto “Creating a Viable Open Source
Alternative to Magma, Maple, Mathematica, and MATLAB”.
The passagemath fork uses the motto "Creating a Free Passage Between the
Scientific Python Ecosystem and Mathematical Software Communities."
It was created in October 2024 with the following goals:
- providing modularized installation with pip,
- establishing first-class membership in the scientific Python
ecosystem,
- giving `clear attribution of upstream
projects <https://groups.google.com/g/sage-devel/c/6HO1HEtL1Fs/m/G002rPGpAAAJ>`__,
- providing independently usable Python interfaces to upstream
libraries,
- offering `platform portability and integration testing
services <https://github.com/passagemath/passagemath/issues/704>`__
to upstream projects,
- inviting collaborations with upstream projects,
- `building a professional, respectful, inclusive
community <https://groups.google.com/g/sage-devel/c/xBzaINHWwUQ>`__,
- `empowering Sage users to participate in the scientific Python ecosystem
<https://github.com/passagemath/passagemath/issues/248>`__ by publishing packages,
- developing a port to `Pyodide <https://pyodide.org/en/stable/>`__ for
serverless deployment with Javascript,
- developing a native Windows port.
`Full documentation <https://passagemath.org/docs/latest/html/en/index.html>`__ is
available online.
passagemath attempts to support and provides binary wheels suitable for
all major Linux distributions and recent versions of macOS.
Binary wheels for native Windows (x86_64) are are available for a subset of
the passagemath distributions. Use of the full functionality of passagemath
on Windows currently requires the use of Windows Subsystem for Linux (WSL)
or virtualization.
The supported Python versions in the passagemath 10.6.x series are 3.10.x-3.13.x.
About this pip-installable distribution package
-----------------------------------------------
The pip-installable distribution package ``passagemath-categories`` is a
distribution of a small part of the Sage Library.
It provides a small subset of the modules of the Sage library
("sagelib", ``passagemath-standard``) building on top of ``passagemath-objects``
(providing Sage objects, the element/parent framework, categories, the coercion
system and the related metaclasses), making various additional categories
available without introducing dependencies on additional mathematical
libraries.
What is included
----------------
* `Structure <https://passagemath.org/docs/latest/html/en/reference/structure/index.html>`_, `Coercion framework <https://passagemath.org/docs/latest/html/en/reference/coercion/index.html>`_, `Base Classes, Metaclasses <https://passagemath.org/docs/latest/html/en/reference/misc/index.html#special-base-classes-decorators-etc>`_
* `Categories and functorial constructions <https://passagemath.org/docs/latest/html/en/reference/categories/index.html>`_
* `Sets <https://passagemath.org/docs/latest/html/en/reference/sets/index.html>`_
* Basic Combinatorial and Data Structures: `Binary trees <https://passagemath.org/docs/latest/html/en/reference/data_structures/sage/misc/binary_tree.html>`_, `Bitsets <https://passagemath.org/docs/latest/html/en/reference/data_structures/sage/data_structures/bitset.html>`_, `Permutations <https://passagemath.org/docs/latest/html/en/reference/combinat/sage/combinat/permutation.html>`_, Combinations
* Basic Rings and Fields: `Integers, Rationals <https://passagemath.org/docs/latest/html/en/reference/rings_standard/index.html>`_, `Double Precision Reals <https://passagemath.org/docs/latest/html/en/reference/rings_numerical/sage/rings/real_double.html>`_, `Z/nZ <https://passagemath.org/docs/latest/html/en/reference/finite_rings/sage/rings/finite_rings/integer_mod_ring.html>`_
* `Commutative Polynomials <https://passagemath.org/docs/latest/html/en/reference/polynomial_rings/index.html>`_, `Power Series and Laurent Series <https://passagemath.org/docs/latest/html/en/reference/power_series/index.html>`_, `Rational Function Fields <https://passagemath.org/docs/latest/html/en/reference/function_fields/index.html>`_
* Arithmetic Functions, `Elementary and Special Functions <https://passagemath.org/docs/latest/html/en/reference/functions/index.html>`_ as generic entry points
* Base classes for Groups, Rings, `Finite Fields <https://passagemath.org/docs/latest/html/en/reference/finite_rings/sage/rings/finite_rings/finite_field_constructor.html>`_, `Number Fields <https://passagemath.org/docs/latest/html/en/reference/number_fields/sage/rings/number_field/number_field_base.html>`_, `Schemes <https://passagemath.org/docs/latest/html/en/reference/schemes/index.html>`_
* Facilities for `Parallel Computing <https://passagemath.org/docs/latest/html/en/reference/parallel/index.html>`_, `Formatted Output <https://passagemath.org/docs/latest/html/en/reference/misc/index.html#formatted-output>`_
Available in other distribution packages
-----------------------------------------------
* `sagemath-combinat <https://pypi.org/project/sagemath-combinat>`_:
Algebraic combinatorics, combinatorial representation theory
* `sagemath-graphs <https://pypi.org/project/sagemath-graphs>`_:
Graphs, posets, hypergraphs, designs, abstract complexes, combinatorial polyhedra, abelian sandpiles, quivers
* `sagemath-groups <https://pypi.org/project/sagemath-groups>`_:
Groups, invariant theory
* `sagemath-modules <https://pypi.org/project/sagemath-modules>`_:
Vectors, matrices, tensors, vector spaces, affine spaces,
modules and algebras, additive groups, quadratic forms, root systems, homology, coding theory, matroids
* `sagemath-plot <https://pypi.org/project/sagemath-plot>`_:
Plotting and graphics with Matplotlib, Three.JS, etc.
* `sagemath-polyhedra <https://pypi.org/project/sagemath-polyhedra>`_:
Convex polyhedra in arbitrary dimension, triangulations, polyhedral fans, lattice points, geometric complexes, hyperplane arrangements
* `sagemath-repl <https://pypi.org/project/sagemath-repl>`_:
IPython REPL, the interactive language of SageMath (preparser), interacts, development tools
* `sagemath-schemes <https://pypi.org/project/sagemath-schemes>`_:
Schemes, varieties, Groebner bases, elliptic curves, algebraic Riemann surfaces, modular forms, arithmetic dynamics
* `sagemath-symbolics <https://pypi.org/project/sagemath-symbolics>`_:
Symbolic expressions, calculus, differentiable manifolds, asymptotics
Dependencies
------------
When building from source, development packages of ``gmp``, ``mpfr``, and ``mpc`` are needed.
Raw data
{
"_id": null,
"home_page": null,
"name": "passagemath-categories",
"maintainer": "Matthias K\u00f6ppe, passagemath contributors",
"docs_url": null,
"requires_python": "<3.14,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "The Sage Developers <sage-support@googlegroups.com>",
"download_url": null,
"platform": null,
"description": "=========================================================================\r\n passagemath: Sage categories, basic rings, polynomials, functions\r\n=========================================================================\r\n\r\n`passagemath <https://github.com/passagemath/passagemath>`__ is open\r\nsource mathematical software in Python, released under the GNU General\r\nPublic Licence GPLv2+.\r\n\r\nIt is a fork of `SageMath <https://www.sagemath.org/>`__, which has been\r\ndeveloped 2005-2025 under the motto \u201cCreating a Viable Open Source\r\nAlternative to Magma, Maple, Mathematica, and MATLAB\u201d.\r\n\r\nThe passagemath fork uses the motto \"Creating a Free Passage Between the\r\nScientific Python Ecosystem and Mathematical Software Communities.\"\r\nIt was created in October 2024 with the following goals:\r\n\r\n- providing modularized installation with pip,\r\n- establishing first-class membership in the scientific Python\r\n ecosystem,\r\n- giving `clear attribution of upstream\r\n projects <https://groups.google.com/g/sage-devel/c/6HO1HEtL1Fs/m/G002rPGpAAAJ>`__,\r\n- providing independently usable Python interfaces to upstream\r\n libraries,\r\n- offering `platform portability and integration testing\r\n services <https://github.com/passagemath/passagemath/issues/704>`__\r\n to upstream projects,\r\n- inviting collaborations with upstream projects,\r\n- `building a professional, respectful, inclusive\r\n community <https://groups.google.com/g/sage-devel/c/xBzaINHWwUQ>`__,\r\n- `empowering Sage users to participate in the scientific Python ecosystem\r\n <https://github.com/passagemath/passagemath/issues/248>`__ by publishing packages,\r\n- developing a port to `Pyodide <https://pyodide.org/en/stable/>`__ for\r\n serverless deployment with Javascript,\r\n- developing a native Windows port.\r\n\r\n`Full documentation <https://passagemath.org/docs/latest/html/en/index.html>`__ is\r\navailable online.\r\n\r\npassagemath attempts to support and provides binary wheels suitable for\r\nall major Linux distributions and recent versions of macOS.\r\n\r\nBinary wheels for native Windows (x86_64) are are available for a subset of\r\nthe passagemath distributions. Use of the full functionality of passagemath\r\non Windows currently requires the use of Windows Subsystem for Linux (WSL)\r\nor virtualization.\r\n\r\nThe supported Python versions in the passagemath 10.6.x series are 3.10.x-3.13.x.\r\n\r\n\r\nAbout this pip-installable distribution package\r\n-----------------------------------------------\r\n\r\nThe pip-installable distribution package ``passagemath-categories`` is a\r\ndistribution of a small part of the Sage Library.\r\n\r\nIt provides a small subset of the modules of the Sage library\r\n(\"sagelib\", ``passagemath-standard``) building on top of ``passagemath-objects``\r\n(providing Sage objects, the element/parent framework, categories, the coercion\r\nsystem and the related metaclasses), making various additional categories\r\navailable without introducing dependencies on additional mathematical\r\nlibraries.\r\n\r\n\r\nWhat is included\r\n----------------\r\n\r\n* `Structure <https://passagemath.org/docs/latest/html/en/reference/structure/index.html>`_, `Coercion framework <https://passagemath.org/docs/latest/html/en/reference/coercion/index.html>`_, `Base Classes, Metaclasses <https://passagemath.org/docs/latest/html/en/reference/misc/index.html#special-base-classes-decorators-etc>`_\r\n\r\n* `Categories and functorial constructions <https://passagemath.org/docs/latest/html/en/reference/categories/index.html>`_\r\n\r\n* `Sets <https://passagemath.org/docs/latest/html/en/reference/sets/index.html>`_\r\n\r\n* Basic Combinatorial and Data Structures: `Binary trees <https://passagemath.org/docs/latest/html/en/reference/data_structures/sage/misc/binary_tree.html>`_, `Bitsets <https://passagemath.org/docs/latest/html/en/reference/data_structures/sage/data_structures/bitset.html>`_, `Permutations <https://passagemath.org/docs/latest/html/en/reference/combinat/sage/combinat/permutation.html>`_, Combinations\r\n\r\n* Basic Rings and Fields: `Integers, Rationals <https://passagemath.org/docs/latest/html/en/reference/rings_standard/index.html>`_, `Double Precision Reals <https://passagemath.org/docs/latest/html/en/reference/rings_numerical/sage/rings/real_double.html>`_, `Z/nZ <https://passagemath.org/docs/latest/html/en/reference/finite_rings/sage/rings/finite_rings/integer_mod_ring.html>`_\r\n\r\n* `Commutative Polynomials <https://passagemath.org/docs/latest/html/en/reference/polynomial_rings/index.html>`_, `Power Series and Laurent Series <https://passagemath.org/docs/latest/html/en/reference/power_series/index.html>`_, `Rational Function Fields <https://passagemath.org/docs/latest/html/en/reference/function_fields/index.html>`_\r\n\r\n* Arithmetic Functions, `Elementary and Special Functions <https://passagemath.org/docs/latest/html/en/reference/functions/index.html>`_ as generic entry points\r\n\r\n* Base classes for Groups, Rings, `Finite Fields <https://passagemath.org/docs/latest/html/en/reference/finite_rings/sage/rings/finite_rings/finite_field_constructor.html>`_, `Number Fields <https://passagemath.org/docs/latest/html/en/reference/number_fields/sage/rings/number_field/number_field_base.html>`_, `Schemes <https://passagemath.org/docs/latest/html/en/reference/schemes/index.html>`_\r\n\r\n* Facilities for `Parallel Computing <https://passagemath.org/docs/latest/html/en/reference/parallel/index.html>`_, `Formatted Output <https://passagemath.org/docs/latest/html/en/reference/misc/index.html#formatted-output>`_\r\n\r\nAvailable in other distribution packages\r\n-----------------------------------------------\r\n\r\n* `sagemath-combinat <https://pypi.org/project/sagemath-combinat>`_:\r\n Algebraic combinatorics, combinatorial representation theory\r\n\r\n* `sagemath-graphs <https://pypi.org/project/sagemath-graphs>`_:\r\n Graphs, posets, hypergraphs, designs, abstract complexes, combinatorial polyhedra, abelian sandpiles, quivers\r\n\r\n* `sagemath-groups <https://pypi.org/project/sagemath-groups>`_:\r\n Groups, invariant theory\r\n\r\n* `sagemath-modules <https://pypi.org/project/sagemath-modules>`_:\r\n Vectors, matrices, tensors, vector spaces, affine spaces,\r\n modules and algebras, additive groups, quadratic forms, root systems, homology, coding theory, matroids\r\n\r\n* `sagemath-plot <https://pypi.org/project/sagemath-plot>`_:\r\n Plotting and graphics with Matplotlib, Three.JS, etc.\r\n\r\n* `sagemath-polyhedra <https://pypi.org/project/sagemath-polyhedra>`_:\r\n Convex polyhedra in arbitrary dimension, triangulations, polyhedral fans, lattice points, geometric complexes, hyperplane arrangements\r\n\r\n* `sagemath-repl <https://pypi.org/project/sagemath-repl>`_:\r\n IPython REPL, the interactive language of SageMath (preparser), interacts, development tools\r\n\r\n* `sagemath-schemes <https://pypi.org/project/sagemath-schemes>`_:\r\n Schemes, varieties, Groebner bases, elliptic curves, algebraic Riemann surfaces, modular forms, arithmetic dynamics\r\n\r\n* `sagemath-symbolics <https://pypi.org/project/sagemath-symbolics>`_:\r\n Symbolic expressions, calculus, differentiable manifolds, asymptotics\r\n\r\n\r\nDependencies\r\n------------\r\n\r\nWhen building from source, development packages of ``gmp``, ``mpfr``, and ``mpc`` are needed.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "passagemath: Sage categories and basic rings",
"version": "10.6.22",
"project_urls": {
"discourse": "https://passagemath.discourse.group",
"documentation": "https://passagemath.org/docs/latest",
"homepage (upstream)": "https://www.sagemath.org",
"release notes": "https://github.com/passagemath/passagemath/releases",
"repo": "https://github.com/passagemath/passagemath",
"repo (upstream)": "https://github.com/sagemath/sage",
"tracker": "https://github.com/passagemath/passagemath/issues",
"tracker (upstream)": "https://github.com/sagemath/sage/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "996fe52a5ecf721976a0c90913584686e5415d16c9184ea32147e2b4de8e0f03",
"md5": "5c4d8f03a796ff024f16ce44ba731211",
"sha256": "25eb62ab38dec6dbc89c9fbab104faa06bd093bdd65c95b1335e79224e09a0df"
},
"downloads": -1,
"filename": "passagemath_categories-10.6.22-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "5c4d8f03a796ff024f16ce44ba731211",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.14,>=3.10",
"size": 10360058,
"upload_time": "2025-09-14T11:18:22",
"upload_time_iso_8601": "2025-09-14T11:18:22.716601Z",
"url": "https://files.pythonhosted.org/packages/99/6f/e52a5ecf721976a0c90913584686e5415d16c9184ea32147e2b4de8e0f03/passagemath_categories-10.6.22-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e363edcf66aba9900e5ebcaa133f6fc09b96b62de1fbc52130d82657111c4cfb",
"md5": "af0d528703570ac612fefcab007b02e6",
"sha256": "33447b08c336913817c4c20269c6121d33b1b18bea2d9a3934d378e5f919fa12"
},
"downloads": -1,
"filename": "passagemath_categories-10.6.22-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "af0d528703570ac612fefcab007b02e6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.14,>=3.10",
"size": 10386837,
"upload_time": "2025-09-14T11:18:26",
"upload_time_iso_8601": "2025-09-14T11:18:26.814827Z",
"url": "https://files.pythonhosted.org/packages/e3/63/edcf66aba9900e5ebcaa133f6fc09b96b62de1fbc52130d82657111c4cfb/passagemath_categories-10.6.22-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "db2b3e1b98f2b6ba53bed26f76e84d19b28c2aa83c95e3b7ae2e0f5928508bd5",
"md5": "a54820bf99335f6b5952835571f5968c",
"sha256": "cd63db388625200cf54eb5b16e8e844999cbb73c81b52b2c1e3c1911a65d8cb6"
},
"downloads": -1,
"filename": "passagemath_categories-10.6.22-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "a54820bf99335f6b5952835571f5968c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.14,>=3.10",
"size": 10369198,
"upload_time": "2025-09-14T11:18:29",
"upload_time_iso_8601": "2025-09-14T11:18:29.285901Z",
"url": "https://files.pythonhosted.org/packages/db/2b/3e1b98f2b6ba53bed26f76e84d19b28c2aa83c95e3b7ae2e0f5928508bd5/passagemath_categories-10.6.22-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e47e799ce56ad41759428b0d53674c8ef9e7f998fc5f2ec6e6c469759b5b9588",
"md5": "27142d7d59a6982c9cbb7c2a50c46a48",
"sha256": "6b8dbf3a593568e3bf5fee08f5c3c40373a2f9f1021c070edfc022791da6a8bc"
},
"downloads": -1,
"filename": "passagemath_categories-10.6.22-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "27142d7d59a6982c9cbb7c2a50c46a48",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": "<3.14,>=3.10",
"size": 10328709,
"upload_time": "2025-09-14T11:18:31",
"upload_time_iso_8601": "2025-09-14T11:18:31.198584Z",
"url": "https://files.pythonhosted.org/packages/e4/7e/799ce56ad41759428b0d53674c8ef9e7f998fc5f2ec6e6c469759b5b9588/passagemath_categories-10.6.22-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-14 11:18:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "passagemath",
"github_project": "passagemath",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "passagemath-categories"
}