pastml


Namepastml JSON
Version 1.9.49 PyPI version JSON
download
home_pagehttps://github.com/evolbioinfo/pastml
SummaryAncestral character reconstruction and visualisation for rooted phylogenetic trees.
upload_time2024-09-18 16:02:44
maintainerNone
docs_urlNone
authorAnna Zhukova
requires_python>=3.10
licenseNone
keywords pastml visualisation phylogeny ancestral character reconstruction
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PastML

__PastML__ provides fast methods for Ancestral Character Reconstruction (ACR) and visualisation
on rooted phylogenetic trees. Given a rooted tree and its node annotations, it can either visualise them as-is, 
or infer ancestral node states based on the tip states, with a selection of maximum likelihood and parsimonious methods. 
The result is then visualised as a zoomable html map.


[![DOI:10.1093/molbev/msz131](https://zenodo.org/badge/DOI/10.1093/molbev/msz131.svg)](https://doi.org/10.1093/molbev/msz131)
[![GitHub release](https://img.shields.io/github/v/release/evolbioinfo/pastml.svg)](https://github.com/evolbioinfo/pastml/releases)
[![Anaconda-Server Badge](https://anaconda.org/bioconda/pastml/badges/version.svg)](https://anaconda.org/bioconda/pastml)
[![PyPI version](https://badge.fury.io/py/pastml.svg)](https://pypi.org/project/pastml/)
[![PyPI downloads](https://shields.io/pypi/dm/pastml)](https://pypi.org/project/pastml/)
[![Docker pulls](https://img.shields.io/docker/pulls/evolbioinfo/pastml)](https://hub.docker.com/r/evolbioinfo/pastml/tags)
[![Unit Tests](https://github.com/evolbioinfo/pastml/workflows/PastML%20Unit%20Tests/badge.svg)](tests)



#### Article

Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O (2019) __A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios__. [_Molecular Biology and Evolution_, msz131](https://doi.org/10.1093/molbev/msz131).

## How it works

For detailed description of the ACR methods, and visualization procedure used in __PastML__ please visit our [help page](https://pastml.pasteur.fr/help).

## Try it online
Try __PastML__ at [pastml.pasteur.fr](https://pastml.pasteur.fr)

# Input data
As an input, one needs to provide a **rooted** phylogenetical tree in [newick](https://en.wikipedia.org/wiki/Newick_format) format,
and a table containing tip states, 
in tab-delimited (by default) or csv format (to be specified with *--data_sep ,* option).

### Example
You can download [HIV1-A in Albania data](examples/Albania/data) as an example.
Let's assume that the tree and annotation files are in the Downloads folder, 
and are named respectively Albanian.tree.152tax.tre	and data.txt.

The data.txt is a comma-separated file, containing tip ids in the first column, 
and Country in the second column, i.e.:

id | Country
----- |  -----
98CMAJ6932 | Africa
98CMAJ6933 | Africa
96CMAJ6134 | Africa
00SEAY5240 | WestEurope
... | ...
02GRAY0303 | Greece
97YUAF9960 | EastEurope

# Installation

There are 3 alternative ways to run __pastml__ on your computer: with [docker](https://www.docker.com/community-edition), [singularity](https://www.sylabs.io/singularity/) or in python3.

## Run with docker

### Basic usage
Once [docker](https://www.docker.com/community-edition) is installed, run the following command:

```bash
docker run -v <path_to_the_folder_containing_the_tree_and_the_annotations>:/data:rw -t evolbioinfo/pastml --tree /data/<tree_file.nwk> --data /data/<annotation_file.csv> --data_sep <separator_eg_,> --columns <column1 column2 ...> --html_compressed /data/<output_map.html>
```

For example, to reconstruct and visualise the ancestral Country states for Albanian data, 
one needs to run the following command:

```bash
docker run -v ~/Downloads:/data:rw -t evolbioinfo/pastml --tree /data/Albanian.tree.152tax.tre --data /data/data.txt --columns Country --html_compressed /data/Albanian_map.html --data_sep , 
```

This will produce a file Albanian_map.html in the Downloads folder, 
that can be viewed with a browser.


#### Help

To see advanced options, run
```bash
docker run -t evolbioinfo/pastml -h
```

## Run with singularity

### Basic usage
Once [singularity](https://www.sylabs.io/guides/2.6/user-guide/quick_start.html#quick-installation-steps) is installed, run the following command:

```bash
singularity run docker://evolbioinfo/pastml --tree <path/to/tree_file.nwk> --data <path/to/annotation_file.csv> --columns <column1 column2 ...> --html_compressed <path/to/output/map.html> --data_sep <separator_eg_,>
```

For example, to reconstruct and visualise the ancestral Country states for Albanian data, 
one needs to run the following command:

```bash
singularity run docker://evolbioinfo/pastml --tree ~/Downloads/Albanian.tree.152tax.tre --data ~/Downloads/data.txt --columns Country --html_compressed ~/Downloads/Albanian_map.html --data_sep , 
```

This will produce a file Albanian_map.html in the Downloads folder, 
that can be viewed with a browser.


#### Help

To see advanced options, run
```bash
singularity run docker://evolbioinfo/pastml -h
```

## Run in python3

### Windows
For **Windows** users, we recommend installing __pastml__ via [Cygwin environment](https://www.cygwin.com/).
First instal python3 and pip3 from the Cygwin packages. Then install __pastml__:
```bash
pip3 install pastml
```

### All other platforms

You can install __pastml__ for python with or without [conda](https://conda.io/docs/), following the procedures described below:

#### Installing with conda

Once you have conda installed create an environment for __pastml__ with python3, here we name it pastmlenv:

```bash
conda create --name pastmlenv python=3
```

Then activate it:
```bash
source activate pastmlenv
```

Then install __pastml__ in it:

```bash
pip install pastml
```

#### Installing without conda

Make sure that pyhon3 and pip3 are installed, then install __pastml__:

```bash
pip3 install pastml
```

### Basic usage in a command line
If you installed __pastml__ via conda, do not forget to first activate the dedicated environment (here named pastmlenv), e.g.

```bash
source activate pastmlenv
```

To run __pastml__:

```bash
pastml --tree <path/to/tree_file.nwk> --data <path/to/annotation_file.csv> --columns <column1 column2 ...> --html_compressed <path/to/output/map.html> --data_sep <separator_eg_,>
```

For example, to reconstruct and visualise the ancestral Country states for Albanian data, 
one needs to run the following command:

```bash
pastml --tree ~/Downloads/Albanian.tree.152tax.tre --data ~/Downloads/data.txt --columns Country --html_compressed ~/Downloads/Albanian_map.html --data_sep , 
```

This will produce a file Albanian_map.html in the Downloads folder, 
that can be viewed with a browser.

#### Help

To see advanced options, run:
```bash
pastml -h
```

### Basic usage in python3
```python
from pastml.acr import pastml_pipeline

# Path to the table containing tip/node annotations, in csv or tab format
data = "~/Downloads/data.txt"

# Path to the tree in newick format
tree = "~/Downloads/Albanian.tree.152tax.tre"

# Columns present in the annotation table,
# for which we want to reconstruct ancestral states
# (for Albanian data we only have one column, but multiple columns are also allowed)
columns = ['Country']

# Path to the output compressed map visualisation
html_compressed = "~/Downloads/Albanian_map.html"

# (Optional) path to the output tree visualisation
html = "~/Downloads/Albanian_tree.html"

pastml_pipeline(data=data, data_sep=',', columns=columns, name_column='Country', tree=tree,
                html_compressed=html_compressed, html=html, verbose=True)
```

### Examples

See the [examples folder](https://github.com/evolbioinfo/pastml/tree/master/examples) for ideas :)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/evolbioinfo/pastml",
    "name": "pastml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "PASTML, visualisation, phylogeny, ancestral character reconstruction",
    "author": "Anna Zhukova",
    "author_email": "anna.zhukova@pasteur.fr",
    "download_url": "https://files.pythonhosted.org/packages/1a/36/321c5703401f46b0388e19425eca082e0b3a4148464b098fc50269ca87a0/pastml-1.9.49.tar.gz",
    "platform": null,
    "description": "# PastML\n\n__PastML__ provides fast methods for Ancestral Character Reconstruction (ACR) and visualisation\non rooted phylogenetic trees. Given a rooted tree and its node annotations, it can either visualise them as-is, \nor infer ancestral node states based on the tip states, with a selection of maximum likelihood and parsimonious methods. \nThe result is then visualised as a zoomable html map.\n\n\n[![DOI:10.1093/molbev/msz131](https://zenodo.org/badge/DOI/10.1093/molbev/msz131.svg)](https://doi.org/10.1093/molbev/msz131)\n[![GitHub release](https://img.shields.io/github/v/release/evolbioinfo/pastml.svg)](https://github.com/evolbioinfo/pastml/releases)\n[![Anaconda-Server Badge](https://anaconda.org/bioconda/pastml/badges/version.svg)](https://anaconda.org/bioconda/pastml)\n[![PyPI version](https://badge.fury.io/py/pastml.svg)](https://pypi.org/project/pastml/)\n[![PyPI downloads](https://shields.io/pypi/dm/pastml)](https://pypi.org/project/pastml/)\n[![Docker pulls](https://img.shields.io/docker/pulls/evolbioinfo/pastml)](https://hub.docker.com/r/evolbioinfo/pastml/tags)\n[![Unit Tests](https://github.com/evolbioinfo/pastml/workflows/PastML%20Unit%20Tests/badge.svg)](tests)\n\n\n\n#### Article\n\nIshikawa SA, Zhukova A, Iwasaki W, Gascuel O (2019) __A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios__. [_Molecular Biology and Evolution_, msz131](https://doi.org/10.1093/molbev/msz131).\n\n## How it works\n\nFor detailed description of the ACR methods, and visualization procedure used in __PastML__ please visit our [help page](https://pastml.pasteur.fr/help).\n\n## Try it online\nTry __PastML__ at [pastml.pasteur.fr](https://pastml.pasteur.fr)\n\n# Input data\nAs an input, one needs to provide a **rooted** phylogenetical tree in [newick](https://en.wikipedia.org/wiki/Newick_format) format,\nand a table containing tip states, \nin tab-delimited (by default) or csv format (to be specified with *--data_sep ,* option).\n\n### Example\nYou can download [HIV1-A in Albania data](examples/Albania/data) as an example.\nLet's assume that the tree and annotation files are in the Downloads folder, \nand are named respectively Albanian.tree.152tax.tre\tand data.txt.\n\nThe data.txt is a comma-separated file, containing tip ids in the first column, \nand Country in the second column, i.e.:\n\nid | Country\n----- |  -----\n98CMAJ6932 | Africa\n98CMAJ6933 | Africa\n96CMAJ6134 | Africa\n00SEAY5240 | WestEurope\n... | ...\n02GRAY0303 | Greece\n97YUAF9960 | EastEurope\n\n# Installation\n\nThere are 3 alternative ways to run __pastml__ on your computer: with [docker](https://www.docker.com/community-edition), [singularity](https://www.sylabs.io/singularity/) or in python3.\n\n## Run with docker\n\n### Basic usage\nOnce [docker](https://www.docker.com/community-edition) is installed, run the following command:\n\n```bash\ndocker run -v <path_to_the_folder_containing_the_tree_and_the_annotations>:/data:rw -t evolbioinfo/pastml --tree /data/<tree_file.nwk> --data /data/<annotation_file.csv> --data_sep <separator_eg_,> --columns <column1 column2 ...> --html_compressed /data/<output_map.html>\n```\n\nFor example, to reconstruct and visualise the ancestral Country states for Albanian data, \none needs to run the following command:\n\n```bash\ndocker run -v ~/Downloads:/data:rw -t evolbioinfo/pastml --tree /data/Albanian.tree.152tax.tre --data /data/data.txt --columns Country --html_compressed /data/Albanian_map.html --data_sep , \n```\n\nThis will produce a file Albanian_map.html in the Downloads folder, \nthat can be viewed with a browser.\n\n\n#### Help\n\nTo see advanced options, run\n```bash\ndocker run -t evolbioinfo/pastml -h\n```\n\n## Run with singularity\n\n### Basic usage\nOnce [singularity](https://www.sylabs.io/guides/2.6/user-guide/quick_start.html#quick-installation-steps) is installed, run the following command:\n\n```bash\nsingularity run docker://evolbioinfo/pastml --tree <path/to/tree_file.nwk> --data <path/to/annotation_file.csv> --columns <column1 column2 ...> --html_compressed <path/to/output/map.html> --data_sep <separator_eg_,>\n```\n\nFor example, to reconstruct and visualise the ancestral Country states for Albanian data, \none needs to run the following command:\n\n```bash\nsingularity run docker://evolbioinfo/pastml --tree ~/Downloads/Albanian.tree.152tax.tre --data ~/Downloads/data.txt --columns Country --html_compressed ~/Downloads/Albanian_map.html --data_sep , \n```\n\nThis will produce a file Albanian_map.html in the Downloads folder, \nthat can be viewed with a browser.\n\n\n#### Help\n\nTo see advanced options, run\n```bash\nsingularity run docker://evolbioinfo/pastml -h\n```\n\n## Run in python3\n\n### Windows\nFor **Windows** users, we recommend installing __pastml__ via [Cygwin environment](https://www.cygwin.com/).\nFirst instal python3 and pip3 from the Cygwin packages. Then install __pastml__:\n```bash\npip3 install pastml\n```\n\n### All other platforms\n\nYou can install __pastml__ for python with or without [conda](https://conda.io/docs/), following the procedures described below:\n\n#### Installing with conda\n\nOnce you have conda installed create an environment for __pastml__ with python3, here we name it pastmlenv:\n\n```bash\nconda create --name pastmlenv python=3\n```\n\nThen activate it:\n```bash\nsource activate pastmlenv\n```\n\nThen install __pastml__ in it:\n\n```bash\npip install pastml\n```\n\n#### Installing without conda\n\nMake sure that pyhon3 and pip3 are installed, then install __pastml__:\n\n```bash\npip3 install pastml\n```\n\n### Basic usage in a command line\nIf you installed __pastml__ via conda, do not forget to first activate the dedicated environment (here named pastmlenv), e.g.\n\n```bash\nsource activate pastmlenv\n```\n\nTo run __pastml__:\n\n```bash\npastml --tree <path/to/tree_file.nwk> --data <path/to/annotation_file.csv> --columns <column1 column2 ...> --html_compressed <path/to/output/map.html> --data_sep <separator_eg_,>\n```\n\nFor example, to reconstruct and visualise the ancestral Country states for Albanian data, \none needs to run the following command:\n\n```bash\npastml --tree ~/Downloads/Albanian.tree.152tax.tre --data ~/Downloads/data.txt --columns Country --html_compressed ~/Downloads/Albanian_map.html --data_sep , \n```\n\nThis will produce a file Albanian_map.html in the Downloads folder, \nthat can be viewed with a browser.\n\n#### Help\n\nTo see advanced options, run:\n```bash\npastml -h\n```\n\n### Basic usage in python3\n```python\nfrom pastml.acr import pastml_pipeline\n\n# Path to the table containing tip/node annotations, in csv or tab format\ndata = \"~/Downloads/data.txt\"\n\n# Path to the tree in newick format\ntree = \"~/Downloads/Albanian.tree.152tax.tre\"\n\n# Columns present in the annotation table,\n# for which we want to reconstruct ancestral states\n# (for Albanian data we only have one column, but multiple columns are also allowed)\ncolumns = ['Country']\n\n# Path to the output compressed map visualisation\nhtml_compressed = \"~/Downloads/Albanian_map.html\"\n\n# (Optional) path to the output tree visualisation\nhtml = \"~/Downloads/Albanian_tree.html\"\n\npastml_pipeline(data=data, data_sep=',', columns=columns, name_column='Country', tree=tree,\n                html_compressed=html_compressed, html=html, verbose=True)\n```\n\n### Examples\n\nSee the [examples folder](https://github.com/evolbioinfo/pastml/tree/master/examples) for ideas :)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Ancestral character reconstruction and visualisation for rooted phylogenetic trees.",
    "version": "1.9.49",
    "project_urls": {
        "Homepage": "https://github.com/evolbioinfo/pastml"
    },
    "split_keywords": [
        "pastml",
        " visualisation",
        " phylogeny",
        " ancestral character reconstruction"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35eef0dc18d5f8d0475f0a81bc03deb320f3b837bb8240efe6b787499c5073d8",
                "md5": "255583951d07039286b0e86d28924b63",
                "sha256": "618609c1efd87541836f42418d6d093adcbdeeb5456b7207bab5c0999c76612e"
            },
            "downloads": -1,
            "filename": "pastml-1.9.49-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "255583951d07039286b0e86d28924b63",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 464913,
            "upload_time": "2024-09-18T16:02:42",
            "upload_time_iso_8601": "2024-09-18T16:02:42.622649Z",
            "url": "https://files.pythonhosted.org/packages/35/ee/f0dc18d5f8d0475f0a81bc03deb320f3b837bb8240efe6b787499c5073d8/pastml-1.9.49-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a36321c5703401f46b0388e19425eca082e0b3a4148464b098fc50269ca87a0",
                "md5": "a150066f42b5d7817f11f9e38b4d0014",
                "sha256": "421f3be11dd0bd09615aeaba0026b8cc749115c7d72b87576c55e652ac943949"
            },
            "downloads": -1,
            "filename": "pastml-1.9.49.tar.gz",
            "has_sig": false,
            "md5_digest": "a150066f42b5d7817f11f9e38b4d0014",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 436064,
            "upload_time": "2024-09-18T16:02:44",
            "upload_time_iso_8601": "2024-09-18T16:02:44.717373Z",
            "url": "https://files.pythonhosted.org/packages/1a/36/321c5703401f46b0388e19425eca082e0b3a4148464b098fc50269ca87a0/pastml-1.9.49.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-18 16:02:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "evolbioinfo",
    "github_project": "pastml",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pastml"
}
        
Elapsed time: 1.07358s