pc-rasterize


Namepc-rasterize JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryRasterize point cloud data in parallel
upload_time2024-09-19 19:04:27
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT License
keywords point cloud raster spatial
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PC Rasterize: Rasterize Point Clouds in Parallel
---

## How to use:

```python
import pc_rasterize as pcr
import glob

files = sorted(glob.glob("../data/points/*.laz"))
# Create a GeoBox grid specification with a 100m buffer around data
geobox = pcr.build_geobox(files, resolution=0.50, crs="5070", buffer=100)
# Build a lazy CHM raster
chm = pcr.rasterize(
    files,
    geobox,
    cell_func="max",
    # Set custom dask chunk-size
    chunksize=(500, 500),
    nodata=np.nan,
    # Filter out points over 100m
    pdal_filters=[
        {
            "type": "filters.expression",
            "expression": "Z < 100"
        }
    ],
)
```

### Saving with default dask scheduling:

```python
# Use rioxarray to save to disk
chm.rio.to_raster("points_chm.tiff", tiled=True)
```

### Saving with dask's more advanced scheduling:
Dask's more advanced 'distributed' scheduling also provides a dashboard at
[http://localhost:8787/status](http://localhost:8787/status) for viewing
progress in your browser.

```python
from dask.distributed import Client, LocalCluster, Lock

with LocalCluster() as cluster, Client(cluster) as client:
    chm.rio.to_raster("points_chm.tiff", tiled=True, lock=Lock("rio"))
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pc-rasterize",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "point, cloud, raster, spatial",
    "author": null,
    "author_email": "Fred Bunt <fredrick.bunt@umt.edu>",
    "download_url": "https://files.pythonhosted.org/packages/f0/48/7a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3/pc_rasterize-0.2.0.tar.gz",
    "platform": null,
    "description": "# PC Rasterize: Rasterize Point Clouds in Parallel\n---\n\n## How to use:\n\n```python\nimport pc_rasterize as pcr\nimport glob\n\nfiles = sorted(glob.glob(\"../data/points/*.laz\"))\n# Create a GeoBox grid specification with a 100m buffer around data\ngeobox = pcr.build_geobox(files, resolution=0.50, crs=\"5070\", buffer=100)\n# Build a lazy CHM raster\nchm = pcr.rasterize(\n    files,\n    geobox,\n    cell_func=\"max\",\n    # Set custom dask chunk-size\n    chunksize=(500, 500),\n    nodata=np.nan,\n    # Filter out points over 100m\n    pdal_filters=[\n        {\n            \"type\": \"filters.expression\",\n            \"expression\": \"Z < 100\"\n        }\n    ],\n)\n```\n\n### Saving with default dask scheduling:\n\n```python\n# Use rioxarray to save to disk\nchm.rio.to_raster(\"points_chm.tiff\", tiled=True)\n```\n\n### Saving with dask's more advanced scheduling:\nDask's more advanced 'distributed' scheduling also provides a dashboard at\n[http://localhost:8787/status](http://localhost:8787/status) for viewing\nprogress in your browser.\n\n```python\nfrom dask.distributed import Client, LocalCluster, Lock\n\nwith LocalCluster() as cluster, Client(cluster) as client:\n    chm.rio.to_raster(\"points_chm.tiff\", tiled=True, lock=Lock(\"rio\"))\n```\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Rasterize point cloud data in parallel",
    "version": "0.2.0",
    "project_urls": {
        "homepage": "https://github.com/UM-RMRS/pc-rasterize",
        "issue-tracker": "https://github.com/UM-RMRS/pc-rasterize/issues"
    },
    "split_keywords": [
        "point",
        " cloud",
        " raster",
        " spatial"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d38b6e9eabdbce5c5beef14dd7d2cac3259141036981b8a240506a1cf23ec5dc",
                "md5": "10e00afa38d8c487752b11dcffc5caa9",
                "sha256": "84daa2bd3b1117b87f40d9910cb4ffcbe46d63cf0f38bca2cd0a232bcf20a85d"
            },
            "downloads": -1,
            "filename": "pc_rasterize-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "10e00afa38d8c487752b11dcffc5caa9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 10305,
            "upload_time": "2024-09-19T19:04:26",
            "upload_time_iso_8601": "2024-09-19T19:04:26.743034Z",
            "url": "https://files.pythonhosted.org/packages/d3/8b/6e9eabdbce5c5beef14dd7d2cac3259141036981b8a240506a1cf23ec5dc/pc_rasterize-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f0487a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3",
                "md5": "5a54f322d15d8d38d0bdb54690fcdf6c",
                "sha256": "6baa7894d273cad03c48e1ac456d08fb94fb1d50174640e076a69ef945908abd"
            },
            "downloads": -1,
            "filename": "pc_rasterize-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5a54f322d15d8d38d0bdb54690fcdf6c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 11084,
            "upload_time": "2024-09-19T19:04:27",
            "upload_time_iso_8601": "2024-09-19T19:04:27.874879Z",
            "url": "https://files.pythonhosted.org/packages/f0/48/7a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3/pc_rasterize-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-19 19:04:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "UM-RMRS",
    "github_project": "pc-rasterize",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "pc-rasterize"
}
        
Elapsed time: 0.33242s