Name | pc-rasterize JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | Rasterize point cloud data in parallel |
upload_time | 2024-09-19 19:04:27 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | MIT License |
keywords |
point
cloud
raster
spatial
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# PC Rasterize: Rasterize Point Clouds in Parallel
---
## How to use:
```python
import pc_rasterize as pcr
import glob
files = sorted(glob.glob("../data/points/*.laz"))
# Create a GeoBox grid specification with a 100m buffer around data
geobox = pcr.build_geobox(files, resolution=0.50, crs="5070", buffer=100)
# Build a lazy CHM raster
chm = pcr.rasterize(
files,
geobox,
cell_func="max",
# Set custom dask chunk-size
chunksize=(500, 500),
nodata=np.nan,
# Filter out points over 100m
pdal_filters=[
{
"type": "filters.expression",
"expression": "Z < 100"
}
],
)
```
### Saving with default dask scheduling:
```python
# Use rioxarray to save to disk
chm.rio.to_raster("points_chm.tiff", tiled=True)
```
### Saving with dask's more advanced scheduling:
Dask's more advanced 'distributed' scheduling also provides a dashboard at
[http://localhost:8787/status](http://localhost:8787/status) for viewing
progress in your browser.
```python
from dask.distributed import Client, LocalCluster, Lock
with LocalCluster() as cluster, Client(cluster) as client:
chm.rio.to_raster("points_chm.tiff", tiled=True, lock=Lock("rio"))
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pc-rasterize",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "point, cloud, raster, spatial",
"author": null,
"author_email": "Fred Bunt <fredrick.bunt@umt.edu>",
"download_url": "https://files.pythonhosted.org/packages/f0/48/7a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3/pc_rasterize-0.2.0.tar.gz",
"platform": null,
"description": "# PC Rasterize: Rasterize Point Clouds in Parallel\n---\n\n## How to use:\n\n```python\nimport pc_rasterize as pcr\nimport glob\n\nfiles = sorted(glob.glob(\"../data/points/*.laz\"))\n# Create a GeoBox grid specification with a 100m buffer around data\ngeobox = pcr.build_geobox(files, resolution=0.50, crs=\"5070\", buffer=100)\n# Build a lazy CHM raster\nchm = pcr.rasterize(\n files,\n geobox,\n cell_func=\"max\",\n # Set custom dask chunk-size\n chunksize=(500, 500),\n nodata=np.nan,\n # Filter out points over 100m\n pdal_filters=[\n {\n \"type\": \"filters.expression\",\n \"expression\": \"Z < 100\"\n }\n ],\n)\n```\n\n### Saving with default dask scheduling:\n\n```python\n# Use rioxarray to save to disk\nchm.rio.to_raster(\"points_chm.tiff\", tiled=True)\n```\n\n### Saving with dask's more advanced scheduling:\nDask's more advanced 'distributed' scheduling also provides a dashboard at\n[http://localhost:8787/status](http://localhost:8787/status) for viewing\nprogress in your browser.\n\n```python\nfrom dask.distributed import Client, LocalCluster, Lock\n\nwith LocalCluster() as cluster, Client(cluster) as client:\n chm.rio.to_raster(\"points_chm.tiff\", tiled=True, lock=Lock(\"rio\"))\n```\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Rasterize point cloud data in parallel",
"version": "0.2.0",
"project_urls": {
"homepage": "https://github.com/UM-RMRS/pc-rasterize",
"issue-tracker": "https://github.com/UM-RMRS/pc-rasterize/issues"
},
"split_keywords": [
"point",
" cloud",
" raster",
" spatial"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d38b6e9eabdbce5c5beef14dd7d2cac3259141036981b8a240506a1cf23ec5dc",
"md5": "10e00afa38d8c487752b11dcffc5caa9",
"sha256": "84daa2bd3b1117b87f40d9910cb4ffcbe46d63cf0f38bca2cd0a232bcf20a85d"
},
"downloads": -1,
"filename": "pc_rasterize-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "10e00afa38d8c487752b11dcffc5caa9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 10305,
"upload_time": "2024-09-19T19:04:26",
"upload_time_iso_8601": "2024-09-19T19:04:26.743034Z",
"url": "https://files.pythonhosted.org/packages/d3/8b/6e9eabdbce5c5beef14dd7d2cac3259141036981b8a240506a1cf23ec5dc/pc_rasterize-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f0487a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3",
"md5": "5a54f322d15d8d38d0bdb54690fcdf6c",
"sha256": "6baa7894d273cad03c48e1ac456d08fb94fb1d50174640e076a69ef945908abd"
},
"downloads": -1,
"filename": "pc_rasterize-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "5a54f322d15d8d38d0bdb54690fcdf6c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 11084,
"upload_time": "2024-09-19T19:04:27",
"upload_time_iso_8601": "2024-09-19T19:04:27.874879Z",
"url": "https://files.pythonhosted.org/packages/f0/48/7a5af76726b4a012e9ed1c7276a8b95864ae66597fb377f299afebf6fec3/pc_rasterize-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-19 19:04:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "UM-RMRS",
"github_project": "pc-rasterize",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pc-rasterize"
}