# pca-pwa
`pca-pwa`, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.
### The Purpose of the Package
- The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset.
The user could easily obtain a pca plot without needing to configure or compile the application.
### Installation
To install `pca_pwa`, you can use pip. Open your terminal and run:
```sh
pip install pca_pwa
```
Open `IPython` or `Jupyter Notebook`
```python
>>> from pca_pwa import app
>>> app.app.run(debug=True, use_reloader=True, host='0.0.0.0', port=8082)
>>> # * Serving Flask app 'app'
>>> # * Debug mode: on
>>> # * Running on http://127.0.0.1:8082
```
Open the url: http://127.0.0.1:8082
![image](https://github.com/danymukesha/pca-pwa/assets/45208254/03c32efa-3873-4173-9682-877c51aefdd6)
Upload `xslx/slx` file (Excel)
- e.g.:
- Click [here](https://github.com/danymukesha/pca-pwa/raw/main/tests/samples_file.xlsx) to download the excel file
* Items/Observations should be in rows
* Variables/Features should in columns
Choose a method of imputation for missing values
Then run the pca by clicking ``Perform PCA`` button.
![image](https://github.com/danymukesha/pca-pwa/assets/45208254/a25bf538-599e-4353-80e4-a26963e4d721)
---------
Otherwise you can use `git clone`:
Here is the [Usage](https://github.com/danymukesha/pca-pwa/blob/main/Usage.md):
Clone the github repository
```git
git clone https://github.com/danymukesha/pca-pwa.git
```
Run the app
```sh
cd pca-pwa
python3.1 pca-pwa/app.y
# * Serving Flask app 'app'
# * Debug mode: on
# * Running on http://127.0.0.1:8082
```
Open the url: http://127.0.0.1:8082
### License
This project is licensed under the MIT License.
### Credits
Author: MIT © [Dany Mukesha](https://danymukesha.github.io/)
Email: danymukesha@gmail.com
Thank you for using `pca_pwa`!
Raw data
{
"_id": null,
"home_page": "https://github.com/danymukesha/pca-pwa",
"name": "pca-pwa",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11,<4.0",
"maintainer_email": "",
"keywords": "pca,danymukesha",
"author": "Dany Mukesha",
"author_email": "danymukesha@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/3d/8b/349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d/pca_pwa-1.0.5.tar.gz",
"platform": null,
"description": "# pca-pwa\n`pca-pwa`, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.\n\n### The Purpose of the Package\n- The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset. \nThe user could easily obtain a pca plot without needing to configure or compile the application.\n\n### Installation\nTo install `pca_pwa`, you can use pip. Open your terminal and run:\n\n```sh\npip install pca_pwa\n```\nOpen `IPython` or `Jupyter Notebook`\n```python\n>>> from pca_pwa import app\n>>> app.app.run(debug=True, use_reloader=True, host='0.0.0.0', port=8082)\n>>> # * Serving Flask app 'app'\n>>> # * Debug mode: on\n>>> # * Running on http://127.0.0.1:8082\n```\n\nOpen the url: http://127.0.0.1:8082\n\n![image](https://github.com/danymukesha/pca-pwa/assets/45208254/03c32efa-3873-4173-9682-877c51aefdd6)\n\nUpload `xslx/slx` file (Excel) \n\n- e.g.:\n - Click [here](https://github.com/danymukesha/pca-pwa/raw/main/tests/samples_file.xlsx) to download the excel file\n * Items/Observations should be in rows\n * Variables/Features should in columns\n\nChoose a method of imputation for missing values\n\nThen run the pca by clicking ``Perform PCA`` button.\n\n![image](https://github.com/danymukesha/pca-pwa/assets/45208254/a25bf538-599e-4353-80e4-a26963e4d721)\n\n---------\n\nOtherwise you can use `git clone`:\n\nHere is the [Usage](https://github.com/danymukesha/pca-pwa/blob/main/Usage.md):\n\nClone the github repository\n\n```git\ngit clone https://github.com/danymukesha/pca-pwa.git\n```\n\nRun the app\n\n```sh\ncd pca-pwa\npython3.1 pca-pwa/app.y\n\n# * Serving Flask app 'app'\n# * Debug mode: on\n# * Running on http://127.0.0.1:8082\n```\n\nOpen the url: http://127.0.0.1:8082\n\n### License\nThis project is licensed under the MIT License.\n\n### Credits\nAuthor: MIT \u00a9 [Dany Mukesha](https://danymukesha.github.io/)\n\nEmail: danymukesha@gmail.com\n\nThank you for using `pca_pwa`!\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "simplified manner for insights and decision-making, by visualizing complex relationships with PCA web application",
"version": "1.0.5",
"project_urls": {
"Homepage": "https://github.com/danymukesha/pca-pwa"
},
"split_keywords": [
"pca",
"danymukesha"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7dbb5b162e372cde2e8e1a41e7acccf5e190f6f24f9a23fe695cf2f6f669f5d0",
"md5": "d4dc31d2b4140f504015690ca9985991",
"sha256": "57748c1f5bf8d898ae4fffdf52304c44b53e92ad7295e190d3b1e76793620b54"
},
"downloads": -1,
"filename": "pca_pwa-1.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d4dc31d2b4140f504015690ca9985991",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11,<4.0",
"size": 7936,
"upload_time": "2024-01-08T18:32:50",
"upload_time_iso_8601": "2024-01-08T18:32:50.183047Z",
"url": "https://files.pythonhosted.org/packages/7d/bb/5b162e372cde2e8e1a41e7acccf5e190f6f24f9a23fe695cf2f6f669f5d0/pca_pwa-1.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3d8b349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d",
"md5": "c26390ac1c80d196b2a6203ecfd2eb7a",
"sha256": "80fbcc51879c6ff9bf95779c6d22bf46c8203c09cb03915d7a7640082847d7b9"
},
"downloads": -1,
"filename": "pca_pwa-1.0.5.tar.gz",
"has_sig": false,
"md5_digest": "c26390ac1c80d196b2a6203ecfd2eb7a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11,<4.0",
"size": 6566,
"upload_time": "2024-01-08T18:32:51",
"upload_time_iso_8601": "2024-01-08T18:32:51.445306Z",
"url": "https://files.pythonhosted.org/packages/3d/8b/349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d/pca_pwa-1.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-08 18:32:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "danymukesha",
"github_project": "pca-pwa",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "pca-pwa"
}