pca-pwa


Namepca-pwa JSON
Version 1.0.5 PyPI version JSON
download
home_pagehttps://github.com/danymukesha/pca-pwa
Summarysimplified manner for insights and decision-making, by visualizing complex relationships with PCA web application
upload_time2024-01-08 18:32:51
maintainer
docs_urlNone
authorDany Mukesha
requires_python>=3.11,<4.0
licenseMIT
keywords pca danymukesha
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pca-pwa
`pca-pwa`, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.

### The Purpose of the Package
- The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset. 
The user could easily obtain a pca plot without needing to configure or compile the application.

### Installation
To install `pca_pwa`, you can use pip. Open your terminal and run:

```sh
pip install pca_pwa
```
Open `IPython` or `Jupyter Notebook`
```python
>>> from pca_pwa import app
>>> app.app.run(debug=True, use_reloader=True, host='0.0.0.0', port=8082)
>>> # * Serving Flask app 'app'
>>> # * Debug mode: on
>>> # * Running on http://127.0.0.1:8082
```

Open the url: http://127.0.0.1:8082

![image](https://github.com/danymukesha/pca-pwa/assets/45208254/03c32efa-3873-4173-9682-877c51aefdd6)

Upload `xslx/slx` file (Excel) 

- e.g.:
  - Click [here](https://github.com/danymukesha/pca-pwa/raw/main/tests/samples_file.xlsx) to download the excel file
    * Items/Observations should be in rows
    * Variables/Features should in columns

Choose a method of imputation for missing values

Then run the pca by clicking ``Perform PCA`` button.

![image](https://github.com/danymukesha/pca-pwa/assets/45208254/a25bf538-599e-4353-80e4-a26963e4d721)

---------

Otherwise you can use `git clone`:

Here is the [Usage](https://github.com/danymukesha/pca-pwa/blob/main/Usage.md):

Clone the github repository

```git
git clone https://github.com/danymukesha/pca-pwa.git
```

Run the app

```sh
cd pca-pwa
python3.1 pca-pwa/app.y

# * Serving Flask app 'app'
# * Debug mode: on
# * Running on http://127.0.0.1:8082
```

Open the url: http://127.0.0.1:8082

### License
This project is licensed under the MIT License.

### Credits
Author: MIT © [Dany Mukesha](https://danymukesha.github.io/)

Email: danymukesha@gmail.com

Thank you for using `pca_pwa`!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/danymukesha/pca-pwa",
    "name": "pca-pwa",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11,<4.0",
    "maintainer_email": "",
    "keywords": "pca,danymukesha",
    "author": "Dany Mukesha",
    "author_email": "danymukesha@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3d/8b/349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d/pca_pwa-1.0.5.tar.gz",
    "platform": null,
    "description": "# pca-pwa\n`pca-pwa`, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.\n\n### The Purpose of the Package\n- The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset. \nThe user could easily obtain a pca plot without needing to configure or compile the application.\n\n### Installation\nTo install `pca_pwa`, you can use pip. Open your terminal and run:\n\n```sh\npip install pca_pwa\n```\nOpen `IPython` or `Jupyter Notebook`\n```python\n>>> from pca_pwa import app\n>>> app.app.run(debug=True, use_reloader=True, host='0.0.0.0', port=8082)\n>>> # * Serving Flask app 'app'\n>>> # * Debug mode: on\n>>> # * Running on http://127.0.0.1:8082\n```\n\nOpen the url: http://127.0.0.1:8082\n\n![image](https://github.com/danymukesha/pca-pwa/assets/45208254/03c32efa-3873-4173-9682-877c51aefdd6)\n\nUpload `xslx/slx` file (Excel) \n\n- e.g.:\n  - Click [here](https://github.com/danymukesha/pca-pwa/raw/main/tests/samples_file.xlsx) to download the excel file\n    * Items/Observations should be in rows\n    * Variables/Features should in columns\n\nChoose a method of imputation for missing values\n\nThen run the pca by clicking ``Perform PCA`` button.\n\n![image](https://github.com/danymukesha/pca-pwa/assets/45208254/a25bf538-599e-4353-80e4-a26963e4d721)\n\n---------\n\nOtherwise you can use `git clone`:\n\nHere is the [Usage](https://github.com/danymukesha/pca-pwa/blob/main/Usage.md):\n\nClone the github repository\n\n```git\ngit clone https://github.com/danymukesha/pca-pwa.git\n```\n\nRun the app\n\n```sh\ncd pca-pwa\npython3.1 pca-pwa/app.y\n\n# * Serving Flask app 'app'\n# * Debug mode: on\n# * Running on http://127.0.0.1:8082\n```\n\nOpen the url: http://127.0.0.1:8082\n\n### License\nThis project is licensed under the MIT License.\n\n### Credits\nAuthor: MIT \u00a9 [Dany Mukesha](https://danymukesha.github.io/)\n\nEmail: danymukesha@gmail.com\n\nThank you for using `pca_pwa`!\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "simplified manner for insights and decision-making, by visualizing complex relationships with PCA web application",
    "version": "1.0.5",
    "project_urls": {
        "Homepage": "https://github.com/danymukesha/pca-pwa"
    },
    "split_keywords": [
        "pca",
        "danymukesha"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7dbb5b162e372cde2e8e1a41e7acccf5e190f6f24f9a23fe695cf2f6f669f5d0",
                "md5": "d4dc31d2b4140f504015690ca9985991",
                "sha256": "57748c1f5bf8d898ae4fffdf52304c44b53e92ad7295e190d3b1e76793620b54"
            },
            "downloads": -1,
            "filename": "pca_pwa-1.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d4dc31d2b4140f504015690ca9985991",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11,<4.0",
            "size": 7936,
            "upload_time": "2024-01-08T18:32:50",
            "upload_time_iso_8601": "2024-01-08T18:32:50.183047Z",
            "url": "https://files.pythonhosted.org/packages/7d/bb/5b162e372cde2e8e1a41e7acccf5e190f6f24f9a23fe695cf2f6f669f5d0/pca_pwa-1.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3d8b349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d",
                "md5": "c26390ac1c80d196b2a6203ecfd2eb7a",
                "sha256": "80fbcc51879c6ff9bf95779c6d22bf46c8203c09cb03915d7a7640082847d7b9"
            },
            "downloads": -1,
            "filename": "pca_pwa-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "c26390ac1c80d196b2a6203ecfd2eb7a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11,<4.0",
            "size": 6566,
            "upload_time": "2024-01-08T18:32:51",
            "upload_time_iso_8601": "2024-01-08T18:32:51.445306Z",
            "url": "https://files.pythonhosted.org/packages/3d/8b/349d1711a733e61d0513387758eba4a2ad4ebdc646c858b98d1d0a81536d/pca_pwa-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-08 18:32:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "danymukesha",
    "github_project": "pca-pwa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pca-pwa"
}
        
Elapsed time: 0.16321s