pcser


Namepcser JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
Summaryprotein corona stealth effect prediction
upload_time2024-07-31 20:15:51
maintainerNone
docs_urlNone
authorJianfeng Sun
requires_python<4.0,>=3.11
licenseGPL-3.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="left">
    <img src="https://github.com/2003100127/pcser/blob/main/img/pcser-logo.png?raw=true" width="200" height="70">
    <br>
</h1>


![PyPI](https://img.shields.io/pypi/v/pcser?logo=PyPI)
![](https://img.shields.io/github/stars/2003100127/pcser?logo=GitHub&color=blue)
[![Downloads](https://pepy.tech/badge/pcser)](https://pepy.tech/project/pcser)

<hr>


![Python](https://img.shields.io/badge/-Python-000?&logo=Python)
![PyPI](https://img.shields.io/badge/-PyPI-000?&logo=PyPI)

###### tags: `protein corona` `nanoparticles` `stealth effect` `machine learning`

## Overview
PCSER is a computational tool for predicting protein corona stealth effects. It was built using the random forest machine learning approach.

## πŸ“” Documentation
Please check https://2003100127.github.io/pcser for how to use PCSER.

## πŸ› οΈ Installation

PCSER can be installed in the following ways.

* ![PyPI](https://img.shields.io/badge/-PyPI-000?&logo=PyPI) (https://pypi.org/project/pcser)

  ```bash
  conda create --name pcser python=3.11
      
  conda activate pcser
  
  pip install pcser --upgrade
  ```

* ![Github](https://img.shields.io/badge/-Github-000?&logo=Github)

  ```bash
  conda create --name pcser python=3.11
    
  conda activate pcser
  
  git clone https://github.com/2003100127/pcser.git
  
  cd pcser
  
  pip install .
  ```

## πŸš€ Quick start

```python
import pcser as pcs

pcs.load.evaluate(
    data_ref_fpn='./Proteomics_07262023_rv_C57BL6_spl54.xlsx',
    sv_fp='./',  # None to('data/')
    input_fpn='./example.xlsx',
    model_fpn='./best_cv.joblib',
    sheet_name='a', # a b
    # mfi_ref=[10271.33333, 10747, 10303.33333, 9663.333333, 10056],
    mfi_ref=[3606.333333, 3606.333333, 3606.333333, 3606.333333],

    # is_norm=True,
    # norm_met='minmax',  # minmax std maxabs
    # mode='compo',  # compo annot
    # mark='spl54',  # spl54 spl63
    # version='extended',  # extended old
)
```

Then, it outputs what is shown below.

```python
# You are using extended sheets.
# You have selected the minmax normalization method.
# Data summary:
# Number of samples: 54
# Number of features: 419
# You have the samples: ['HuApoA1', 'MoApoA1', 'HuClusterin', 'MoClusterin']
# PCSER predictions: 
#              stealth_effect          MFI
# HuApoA1            0.670762  3099.790003
# MoApoA1            0.662108  3189.458730
# HuClusterin        0.634621  3474.270396
# MoClusterin        0.633914  3481.599008
# stealth_effect	MFI
# HuApoA1	0.670762	3099.790003
# MoApoA1	0.662108	3189.458730
# HuClusterin	0.634621	3474.270396
# MoClusterin	0.633914	3481.599008
```

## πŸ“„ Citation
```angular2html
@article{PCSER,
    title = {PCSER},
    author = {Jianfeng Sun},
    doi = {xxx},
    url = {https://github.com/2003100127/pcser},
    journal = {xxx}
    year = {2024},
}
```

## 🏠 Homepage
[πŸ“Oxford University](https://www.ndorms.ox.ac.uk/team/jianfeng-sun) 

## πŸ“§ Reach us
[![Linkedin Badge](https://img.shields.io/badge/-Jianfeng_Sun-blue?style=flat-square&logo=Linkedin&logoColor=white&link=https://www.linkedin.com/in/jianfeng-sun-2ba9b1132)](https://www.linkedin.com/in/jianfeng-sun-2ba9b1132) 
[![Gmail Badge](https://img.shields.io/badge/-jianfeng.sunmt@gmail.com-c14438?style=flat-square&logo=Gmail&logoColor=white&link=mailto:jianfeng.sunmt@gmail.com)](mailto:jianfeng.sunmt@gmail.com)
[![Outlook Badge](https://img.shields.io/badge/jianfeng.sun@ndorms.ox.ac.uk--000?style=social&logo=microsoft-outlook&logoColor=0078d4&link=mailto:jianfeng.sun@ndorms.ox.ac.uk)](mailto:jianfeng.sun@ndorms.ox.ac.uk)
<a href="https://twitter.com/Jianfeng_Sunny" ><img src="https://img.shields.io/twitter/follow/Jianfeng_Sunny.svg?style=social" /> </a>
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pcser",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "Jianfeng Sun",
    "author_email": "jianfeng.sunmt@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/54/d5/5f082378445f3d70168a6b10892867bc12f34218bcee002d285dc3120fdd/pcser-0.0.2.tar.gz",
    "platform": null,
    "description": "<h1 align=\"left\">\n    <img src=\"https://github.com/2003100127/pcser/blob/main/img/pcser-logo.png?raw=true\" width=\"200\" height=\"70\">\n    <br>\n</h1>\n\n\n![PyPI](https://img.shields.io/pypi/v/pcser?logo=PyPI)\n![](https://img.shields.io/github/stars/2003100127/pcser?logo=GitHub&color=blue)\n[![Downloads](https://pepy.tech/badge/pcser)](https://pepy.tech/project/pcser)\n\n<hr>\n\n\n![Python](https://img.shields.io/badge/-Python-000?&logo=Python)\n![PyPI](https://img.shields.io/badge/-PyPI-000?&logo=PyPI)\n\n###### tags: `protein corona` `nanoparticles` `stealth effect` `machine learning`\n\n## Overview\nPCSER is a computational tool for predicting protein corona stealth effects. It was built using the random forest machine learning approach.\n\n## \ud83d\udcd4 Documentation\nPlease check https://2003100127.github.io/pcser for how to use PCSER.\n\n## \ud83d\udee0\ufe0f Installation\n\nPCSER can be installed in the following ways.\n\n* ![PyPI](https://img.shields.io/badge/-PyPI-000?&logo=PyPI) (https://pypi.org/project/pcser)\n\n  ```bash\n  conda create --name pcser python=3.11\n      \n  conda activate pcser\n  \n  pip install pcser --upgrade\n  ```\n\n* ![Github](https://img.shields.io/badge/-Github-000?&logo=Github)\n\n  ```bash\n  conda create --name pcser python=3.11\n    \n  conda activate pcser\n  \n  git clone https://github.com/2003100127/pcser.git\n  \n  cd pcser\n  \n  pip install .\n  ```\n\n## \ud83d\ude80 Quick start\n\n```python\nimport pcser as pcs\n\npcs.load.evaluate(\n    data_ref_fpn='./Proteomics_07262023_rv_C57BL6_spl54.xlsx',\n    sv_fp='./',  # None to('data/')\n    input_fpn='./example.xlsx',\n    model_fpn='./best_cv.joblib',\n    sheet_name='a', # a b\n    # mfi_ref=[10271.33333, 10747, 10303.33333, 9663.333333, 10056],\n    mfi_ref=[3606.333333, 3606.333333, 3606.333333, 3606.333333],\n\n    # is_norm=True,\n    # norm_met='minmax',  # minmax std maxabs\n    # mode='compo',  # compo annot\n    # mark='spl54',  # spl54 spl63\n    # version='extended',  # extended old\n)\n```\n\nThen, it outputs what is shown below.\n\n```python\n# You are using extended sheets.\n# You have selected the minmax normalization method.\n# Data summary:\n# Number of samples: 54\n# Number of features: 419\n# You have the samples: ['HuApoA1', 'MoApoA1', 'HuClusterin', 'MoClusterin']\n# PCSER predictions: \n#              stealth_effect          MFI\n# HuApoA1            0.670762  3099.790003\n# MoApoA1            0.662108  3189.458730\n# HuClusterin        0.634621  3474.270396\n# MoClusterin        0.633914  3481.599008\n# stealth_effect\tMFI\n# HuApoA1\t0.670762\t3099.790003\n# MoApoA1\t0.662108\t3189.458730\n# HuClusterin\t0.634621\t3474.270396\n# MoClusterin\t0.633914\t3481.599008\n```\n\n## \ud83d\udcc4 Citation\n```angular2html\n@article{PCSER,\n    title = {PCSER},\n    author = {Jianfeng Sun},\n    doi = {xxx},\n    url = {https://github.com/2003100127/pcser},\n    journal = {xxx}\n    year = {2024},\n}\n```\n\n## \ud83c\udfe0 Homepage\n[\ud83d\udccdOxford University](https://www.ndorms.ox.ac.uk/team/jianfeng-sun) \n\n## \ud83d\udce7 Reach us\n[![Linkedin Badge](https://img.shields.io/badge/-Jianfeng_Sun-blue?style=flat-square&logo=Linkedin&logoColor=white&link=https://www.linkedin.com/in/jianfeng-sun-2ba9b1132)](https://www.linkedin.com/in/jianfeng-sun-2ba9b1132) \n[![Gmail Badge](https://img.shields.io/badge/-jianfeng.sunmt@gmail.com-c14438?style=flat-square&logo=Gmail&logoColor=white&link=mailto:jianfeng.sunmt@gmail.com)](mailto:jianfeng.sunmt@gmail.com)\n[![Outlook Badge](https://img.shields.io/badge/jianfeng.sun@ndorms.ox.ac.uk--000?style=social&logo=microsoft-outlook&logoColor=0078d4&link=mailto:jianfeng.sun@ndorms.ox.ac.uk)](mailto:jianfeng.sun@ndorms.ox.ac.uk)\n<a href=\"https://twitter.com/Jianfeng_Sunny\" ><img src=\"https://img.shields.io/twitter/follow/Jianfeng_Sunny.svg?style=social\" /> </a>",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "protein corona stealth effect prediction",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a97c8c8ec278656b7808caf72e6080db3268cfbcb4b561c8b119cd0f4a6e2d8",
                "md5": "2f9343140962769baba473edb51b8189",
                "sha256": "3ae8362b786efa87fdc9a2ab790b8ecc3205819fad5d7dc729b10e6daa61a831"
            },
            "downloads": -1,
            "filename": "pcser-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f9343140962769baba473edb51b8189",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 28381,
            "upload_time": "2024-07-31T20:15:50",
            "upload_time_iso_8601": "2024-07-31T20:15:50.366140Z",
            "url": "https://files.pythonhosted.org/packages/1a/97/c8c8ec278656b7808caf72e6080db3268cfbcb4b561c8b119cd0f4a6e2d8/pcser-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "54d55f082378445f3d70168a6b10892867bc12f34218bcee002d285dc3120fdd",
                "md5": "77bbb1267a038e0672f29ff6535c27ba",
                "sha256": "0fd638f6b45ab43cd0d32d04b45b1d84e4b789c45b0e1235bae0c4120e29ab2a"
            },
            "downloads": -1,
            "filename": "pcser-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "77bbb1267a038e0672f29ff6535c27ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 25126,
            "upload_time": "2024-07-31T20:15:51",
            "upload_time_iso_8601": "2024-07-31T20:15:51.866653Z",
            "url": "https://files.pythonhosted.org/packages/54/d5/5f082378445f3d70168a6b10892867bc12f34218bcee002d285dc3120fdd/pcser-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-31 20:15:51",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pcser"
}
        
Elapsed time: 0.27650s