# PCY implementation
[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
## Example
# test.py
```
from pcy_algo import pcy_algo
num_transactions = pd.read_csv("path/to/dataset")
hash_func_size = 40
support = 500 # 5 percentage
confidence = 30
```
# num_transactions containes baskets with items encoded as integers
- num_transactions = [[12,1,2,3,4],[2,3,49,45,12],[12,98,45,22]]
# unique_items contains distinct elements.
- unique_items = (12,1,2,3,4,49,45,98,22)
# create object
```
basket = pcy_algo(num_transactions,unique_items,hash_func_size,support,confidence)
result = basket.mine_data()
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pcy-algo",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "association rule mining, apriori algorithm, data mining",
"author": "Murali B",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/4f/9d/6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc/pcy_algo-0.0.2.tar.gz",
"platform": null,
"description": "# PCY implementation \n\n[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/) \n[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/) \n\n## Example\n\n# test.py\n```\nfrom pcy_algo import pcy_algo\nnum_transactions = pd.read_csv(\"path/to/dataset\")\nhash_func_size = 40 \nsupport = 500 # 5 percentage\nconfidence = 30\n```\n# num_transactions containes baskets with items encoded as integers\n- num_transactions = [[12,1,2,3,4],[2,3,49,45,12],[12,98,45,22]]\n# unique_items contains distinct elements.\n- unique_items = (12,1,2,3,4,49,45,98,22)\n# create object\n```\nbasket = pcy_algo(num_transactions,unique_items,hash_func_size,support,confidence)\nresult = basket.mine_data()\n```\n\n\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "PCY implementation in association rule mining",
"version": "0.0.2",
"project_urls": null,
"split_keywords": [
"association rule mining",
" apriori algorithm",
" data mining"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3bb4982507f8e381924554866c77bcc946dfd75c3c4859e25260ed6b9df2f6f7",
"md5": "917ef31e37621c808fc62dff2cdb90ed",
"sha256": "63d58e7f16c96ea0a283b59a0f8c6c5a397767142abc07fb73e6843c4770d01b"
},
"downloads": -1,
"filename": "pcy_algo-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "917ef31e37621c808fc62dff2cdb90ed",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 3456,
"upload_time": "2024-04-10T01:18:15",
"upload_time_iso_8601": "2024-04-10T01:18:15.035754Z",
"url": "https://files.pythonhosted.org/packages/3b/b4/982507f8e381924554866c77bcc946dfd75c3c4859e25260ed6b9df2f6f7/pcy_algo-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4f9d6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc",
"md5": "b6e8aab6339125d04e5485dbc2ec60c0",
"sha256": "8b6626fe1501b108fabd9bf248cb7eab2fbd71f815468c0ee864c62279d3492b"
},
"downloads": -1,
"filename": "pcy_algo-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "b6e8aab6339125d04e5485dbc2ec60c0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 3279,
"upload_time": "2024-04-10T01:18:16",
"upload_time_iso_8601": "2024-04-10T01:18:16.190158Z",
"url": "https://files.pythonhosted.org/packages/4f/9d/6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc/pcy_algo-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-10 01:18:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pcy-algo"
}