pcy-algo


Namepcy-algo JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryPCY implementation in association rule mining
upload_time2024-04-10 01:18:16
maintainerNone
docs_urlNone
authorMurali B
requires_python>=3.6
licenseNone
keywords association rule mining apriori algorithm data mining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PCY implementation 

[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   

## Example

# test.py
```
from pcy_algo import pcy_algo
num_transactions = pd.read_csv("path/to/dataset")
hash_func_size = 40 
support = 500 # 5 percentage
confidence = 30
```
# num_transactions containes baskets with items encoded as integers
- num_transactions = [[12,1,2,3,4],[2,3,49,45,12],[12,98,45,22]]
# unique_items contains distinct elements.
- unique_items = (12,1,2,3,4,49,45,98,22)
# create object
```
basket = pcy_algo(num_transactions,unique_items,hash_func_size,support,confidence)
result = basket.mine_data()
```





            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pcy-algo",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "association rule mining, apriori algorithm, data mining",
    "author": "Murali B",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4f/9d/6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc/pcy_algo-0.0.2.tar.gz",
    "platform": null,
    "description": "# PCY implementation \n\n[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 \n[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   \n\n## Example\n\n# test.py\n```\nfrom pcy_algo import pcy_algo\nnum_transactions = pd.read_csv(\"path/to/dataset\")\nhash_func_size = 40 \nsupport = 500 # 5 percentage\nconfidence = 30\n```\n# num_transactions containes baskets with items encoded as integers\n- num_transactions = [[12,1,2,3,4],[2,3,49,45,12],[12,98,45,22]]\n# unique_items contains distinct elements.\n- unique_items = (12,1,2,3,4,49,45,98,22)\n# create object\n```\nbasket = pcy_algo(num_transactions,unique_items,hash_func_size,support,confidence)\nresult = basket.mine_data()\n```\n\n\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "PCY implementation in association rule mining",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [
        "association rule mining",
        " apriori algorithm",
        " data mining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3bb4982507f8e381924554866c77bcc946dfd75c3c4859e25260ed6b9df2f6f7",
                "md5": "917ef31e37621c808fc62dff2cdb90ed",
                "sha256": "63d58e7f16c96ea0a283b59a0f8c6c5a397767142abc07fb73e6843c4770d01b"
            },
            "downloads": -1,
            "filename": "pcy_algo-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "917ef31e37621c808fc62dff2cdb90ed",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 3456,
            "upload_time": "2024-04-10T01:18:15",
            "upload_time_iso_8601": "2024-04-10T01:18:15.035754Z",
            "url": "https://files.pythonhosted.org/packages/3b/b4/982507f8e381924554866c77bcc946dfd75c3c4859e25260ed6b9df2f6f7/pcy_algo-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4f9d6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc",
                "md5": "b6e8aab6339125d04e5485dbc2ec60c0",
                "sha256": "8b6626fe1501b108fabd9bf248cb7eab2fbd71f815468c0ee864c62279d3492b"
            },
            "downloads": -1,
            "filename": "pcy_algo-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "b6e8aab6339125d04e5485dbc2ec60c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3279,
            "upload_time": "2024-04-10T01:18:16",
            "upload_time_iso_8601": "2024-04-10T01:18:16.190158Z",
            "url": "https://files.pythonhosted.org/packages/4f/9d/6a4d272cbb0f7b7f8378cb2554e56d475e2a854c0689fe2dd7e82623c1bc/pcy_algo-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-10 01:18:16",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pcy-algo"
}
        
Elapsed time: 0.23301s