peakoscope


Namepeakoscope JSON
Version 1.0.0 PyPI version JSON
download
home_page
SummaryData analysis of peak and valley regions
upload_time2024-03-14 07:48:37
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords peak valley time series random walk nested regions hierarchical
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Peakoscope
[![PyPI version](https://badge.fury.io/py/peakoscope.svg)](https://badge.fury.io/py/peakoscope)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

Peakoscope is a python package for hierarchical analysis of peak and valley regions in numeric data.

![peak plot](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/output.png?raw=true "fig, (peaks.plot.ax, valleys.plot.ax) = plt.subplots(2, 1, sharex=True, figsize=(4, 4));
peaks.plot.crowns(peaks.size_filter(maxsize=7))
peaks.plot.bounding_boxes(peaks.size_filter(maxsize=7))
valleys.plot.crowns(valleys.size_filter(maxsize=7), facecolor='C9')
valleys.plot.bounding_boxes(valleys.size_filter(maxsize=7), edgecolor='C1')
peaks.plot.ax.set_title('Peak regions')
valleys.plot.ax.set_title('Valley regions')
peaks.plot.ax.plot(X, Y, linewidth=2, color='black')
valleys.plot.ax.plot(X, Y, linewidth=2, color='black');")

* Peak and valley regions can be nested, for example, when a large peak region contains smaller subpeak regions.
* Based on a one-pass algorithm that finds all peak regions and orders them into a tree.
* Classes for peak/valley objects and tree objects.
* Optional interfaces to matplotlib, pandas and polars.

## Usage examples
Compute the tree of nested peak regions in a data set:
```python
>>> import peakoscope
>>> data = [10, 30, 40, 30, 10, 50, 70, 70, 50, 80]
>>> print(peakoscope.tree(data))
0:10
├─5:10
│ ├─9:10
│ └─6:8
└─1:4
  └─2:3
```
From the tree, select default peak regions and print their subarrays of data:
```python
>>> for peak in peakoscope.tree(data).size_filter():
...    print(peak.subarray(data))
... 
[80]
[70, 70]
[30, 40, 30]
```

## Howto files
The github repo contains tutorials and a glossary:
* [plotting_tutorial.ipynb](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/plotting_tutorial.ipynb)
* [dataframes_tutorial.ipynb](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/dataframes_tutorial.ipynb)
* [glossary.rst](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/glossary.rst)

## Authors
* Eivind Tøstesen, <contact@tostesen.no>

## License
Copyright (C) 2021-2024 Eivind Tøstesen. This software is licensed under [GPLv3](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/LICENSE?raw=true "included LICENSE file")

## Citation
Citation can include one or more of:

* Peakoscope + version
* Github URL: https://github.com/eivindtostesen/hierarchical_peak_finding
* PyPI URL: https://pypi.org/project/peakoscope/
* The open-access article:

    >Tøstesen, E.
    >A stitch in time: Efficient computation of genomic DNA melting bubbles.
    >*Algorithms for Molecular Biology*, 3, 10 (2008).
    >[DOI: 10.1186/1748-7188-3-10](http://dx.doi.org/10.1186/1748-7188-3-10)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "peakoscope",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "peak,valley,time series,random walk,nested regions,hierarchical",
    "author": "",
    "author_email": "Eivind T\u00f8stesen <contact@tostesen.no>",
    "download_url": "https://files.pythonhosted.org/packages/35/ca/15b1867d3fc966d6fdbeb9bde06f54a7a18a3115a12896b63a3ca283b71c/peakoscope-1.0.0.tar.gz",
    "platform": null,
    "description": "# Peakoscope\n[![PyPI version](https://badge.fury.io/py/peakoscope.svg)](https://badge.fury.io/py/peakoscope)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nPeakoscope is a python package for hierarchical analysis of peak and valley regions in numeric data.\n\n![peak plot](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/output.png?raw=true \"fig, (peaks.plot.ax, valleys.plot.ax) = plt.subplots(2, 1, sharex=True, figsize=(4, 4));\npeaks.plot.crowns(peaks.size_filter(maxsize=7))\npeaks.plot.bounding_boxes(peaks.size_filter(maxsize=7))\nvalleys.plot.crowns(valleys.size_filter(maxsize=7), facecolor='C9')\nvalleys.plot.bounding_boxes(valleys.size_filter(maxsize=7), edgecolor='C1')\npeaks.plot.ax.set_title('Peak regions')\nvalleys.plot.ax.set_title('Valley regions')\npeaks.plot.ax.plot(X, Y, linewidth=2, color='black')\nvalleys.plot.ax.plot(X, Y, linewidth=2, color='black');\")\n\n* Peak and valley regions can be nested, for example, when a large peak region contains smaller subpeak regions.\n* Based on a one-pass algorithm that finds all peak regions and orders them into a tree.\n* Classes for peak/valley objects and tree objects.\n* Optional interfaces to matplotlib, pandas and polars.\n\n## Usage examples\nCompute the tree of nested peak regions in a data set:\n```python\n>>> import peakoscope\n>>> data = [10, 30, 40, 30, 10, 50, 70, 70, 50, 80]\n>>> print(peakoscope.tree(data))\n0:10\n\u251c\u25005:10\n\u2502 \u251c\u25009:10\n\u2502 \u2514\u25006:8\n\u2514\u25001:4\n  \u2514\u25002:3\n```\nFrom the tree, select default peak regions and print their subarrays of data:\n```python\n>>> for peak in peakoscope.tree(data).size_filter():\n...    print(peak.subarray(data))\n... \n[80]\n[70, 70]\n[30, 40, 30]\n```\n\n## Howto files\nThe github repo contains tutorials and a glossary:\n* [plotting_tutorial.ipynb](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/plotting_tutorial.ipynb)\n* [dataframes_tutorial.ipynb](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/dataframes_tutorial.ipynb)\n* [glossary.rst](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/glossary.rst)\n\n## Authors\n* Eivind T\u00f8stesen, <contact@tostesen.no>\n\n## License\nCopyright (C) 2021-2024 Eivind T\u00f8stesen. This software is licensed under [GPLv3](https://github.com/eivindtostesen/hierarchical_peak_finding/blob/v1.0.0/LICENSE?raw=true \"included LICENSE file\")\n\n## Citation\nCitation can include one or more of:\n\n* Peakoscope + version\n* Github URL: https://github.com/eivindtostesen/hierarchical_peak_finding\n* PyPI URL: https://pypi.org/project/peakoscope/\n* The open-access article:\n\n    >T\u00f8stesen, E.\n    >A stitch in time: Efficient computation of genomic DNA melting bubbles.\n    >*Algorithms for Molecular Biology*, 3, 10 (2008).\n    >[DOI: 10.1186/1748-7188-3-10](http://dx.doi.org/10.1186/1748-7188-3-10)\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Data analysis of peak and valley regions",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/eivindtostesen/hierarchical_peak_finding",
        "Issues": "https://github.com/eivindtostesen/hierarchical_peak_finding/issues"
    },
    "split_keywords": [
        "peak",
        "valley",
        "time series",
        "random walk",
        "nested regions",
        "hierarchical"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e83f249b234f0eda39e2bc2c6f8b0e1d7e13b0726be45235a45bcfc9e92af597",
                "md5": "a5b784a9242d62a35bf1ef8037761992",
                "sha256": "acf8061970090e556bd8bef19d22eb71a1bf1809e8a2042c6449e0c7c252c8f2"
            },
            "downloads": -1,
            "filename": "peakoscope-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a5b784a9242d62a35bf1ef8037761992",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 34218,
            "upload_time": "2024-03-14T07:48:35",
            "upload_time_iso_8601": "2024-03-14T07:48:35.840548Z",
            "url": "https://files.pythonhosted.org/packages/e8/3f/249b234f0eda39e2bc2c6f8b0e1d7e13b0726be45235a45bcfc9e92af597/peakoscope-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35ca15b1867d3fc966d6fdbeb9bde06f54a7a18a3115a12896b63a3ca283b71c",
                "md5": "68dc555818a76d58b4537e6852cbe558",
                "sha256": "48379c44c191602e353ebf803e61586ff5d20832f543f536db102b83ffa8fff2"
            },
            "downloads": -1,
            "filename": "peakoscope-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "68dc555818a76d58b4537e6852cbe558",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 30076,
            "upload_time": "2024-03-14T07:48:37",
            "upload_time_iso_8601": "2024-03-14T07:48:37.121792Z",
            "url": "https://files.pythonhosted.org/packages/35/ca/15b1867d3fc966d6fdbeb9bde06f54a7a18a3115a12896b63a3ca283b71c/peakoscope-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-14 07:48:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eivindtostesen",
    "github_project": "hierarchical_peak_finding",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "peakoscope"
}
        
Elapsed time: 0.41089s