penn


Namepenn JSON
Version 0.0.12 PyPI version JSON
download
home_pagehttps://github.com/interactiveaudiolab/penn
SummaryPitch Estimating Neural Networks (PENN)
upload_time2023-11-07 17:44:51
maintainer
docs_urlNone
authorMax Morrison, Caedon Hsieh, Nathan Pruyne, and Bryan Pardo
requires_python
licenseMIT
keywords audio frequency music periodicity pitch speech
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">Pitch-Estimating Neural Networks (PENN)</h1>
<div align="center">

[![PyPI](https://img.shields.io/pypi/v/penn.svg)](https://pypi.python.org/pypi/penn)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Downloads](https://static.pepy.tech/badge/penn)](https://pepy.tech/project/penn)

</div>

Training, evaluation, and inference of neural pitch and periodicity estimators in PyTorch. Includes the original code for the paper ["Cross-domain Neural Pitch and Periodicity Estimation"](https://arxiv.org/abs/2301.12258).


## Table of contents

- [Installation](#installation)
- [Inference](#inference)
    * [Application programming interface](#application-programming-interface)
        * [`penn.from_audio`](#pennfrom_audio)
        * [`penn.from_file`](#pennfrom_file)
        * [`penn.from_file_to_file`](#pennfrom_file_to_file)
        * [`penn.from_files_to_files`](#pennfrom_files_to_files)
    * [Command-line interface](#command-line-interface)
- [Training](#training)
    * [Download](#download)
    * [Preprocess](#preprocess)
    * [Partition](#partition)
    * [Train](#train)
    * [Monitor](#monitor)
- [Evaluation](#evaluation)
    * [Evaluate](#evaluate)
    * [Plot](#plot)
- [Citation](#citation)


## Installation

If you want to perform pitch estimation using a pretrained FCNF0++ model, run
`pip install penn`

If you want to train or use your own models, run
`pip install penn[train]`


## Inference

Perform inference using FCNF0++

```
import penn

# Load audio
audio, sample_rate = torchaudio.load('test/assets/gershwin.wav')

# Here we'll use a 10 millisecond hopsize
hopsize = .01

# Provide a sensible frequency range given your domain and model
fmin = 30.
fmax = 1000.

# Choose a gpu index to use for inference. Set to None to use cpu.
gpu = 0

# If you are using a gpu, pick a batch size that doesn't cause memory errors
# on your gpu
batch_size = 2048

# Select a checkpoint to use for inference. Selecting None will
# download and use FCNF0++ pretrained on MDB-stem-synth and PTDB
checkpoint = None

# Centers frames at hopsize / 2, 3 * hopsize / 2, 5 * hopsize / 2, ...
center = 'half-hop'

# (Optional) Linearly interpolate unvoiced regions below periodicity threshold
interp_unvoiced_at = .065

# Infer pitch and periodicity
pitch, periodicity = penn.from_audio(
    audio,
    sample_rate,
    hopsize=hopsize,
    fmin=fmin,
    fmax=fmax,
    checkpoint=checkpoint,
    batch_size=batch_size,
    center=center,
    interp_unvoiced_at=interp_unvoiced_at,
    gpu=gpu)
```


### Application programming interface

#### `penn.from_audio`

```
"""Perform pitch and periodicity estimation

Args:
    audio: The audio to extract pitch and periodicity from
    sample_rate: The audio sample rate
    hopsize: The hopsize in seconds
    fmin: The minimum allowable frequency in Hz
    fmax: The maximum allowable frequency in Hz
    checkpoint: The checkpoint file
    batch_size: The number of frames per batch
    center: Padding options. One of ['half-window', 'half-hop', 'zero'].
    interp_unvoiced_at: Specifies voicing threshold for interpolation
    gpu: The index of the gpu to run inference on

Returns:
    pitch: torch.tensor(
        shape=(1, int(samples // penn.seconds_to_sample(hopsize))))
    periodicity: torch.tensor(
        shape=(1, int(samples // penn.seconds_to_sample(hopsize))))
"""
```


#### `penn.from_file`

```
"""Perform pitch and periodicity estimation from audio on disk

Args:
    file: The audio file
    hopsize: The hopsize in seconds
    fmin: The minimum allowable frequency in Hz
    fmax: The maximum allowable frequency in Hz
    checkpoint: The checkpoint file
    batch_size: The number of frames per batch
    center: Padding options. One of ['half-window', 'half-hop', 'zero'].
    interp_unvoiced_at: Specifies voicing threshold for interpolation
    gpu: The index of the gpu to run inference on

Returns:
    pitch: torch.tensor(shape=(1, int(samples // hopsize)))
    periodicity: torch.tensor(shape=(1, int(samples // hopsize)))
"""
```


#### `penn.from_file_to_file`

```
"""Perform pitch and periodicity estimation from audio on disk and save

Args:
    file: The audio file
    output_prefix: The file to save pitch and periodicity without extension
    hopsize: The hopsize in seconds
    fmin: The minimum allowable frequency in Hz
    fmax: The maximum allowable frequency in Hz
    checkpoint: The checkpoint file
    batch_size: The number of frames per batch
    center: Padding options. One of ['half-window', 'half-hop', 'zero'].
    interp_unvoiced_at: Specifies voicing threshold for interpolation
    gpu: The index of the gpu to run inference on
"""
```


#### `penn.from_files_to_files`

```
"""Perform pitch and periodicity estimation from files on disk and save

Args:
    files: The audio files
    output_prefixes: Files to save pitch and periodicity without extension
    hopsize: The hopsize in seconds
    fmin: The minimum allowable frequency in Hz
    fmax: The maximum allowable frequency in Hz
    checkpoint: The checkpoint file
    batch_size: The number of frames per batch
    center: Padding options. One of ['half-window', 'half-hop', 'zero'].
    interp_unvoiced_at: Specifies voicing threshold for interpolation
    gpu: The index of the gpu to run inference on
"""
```


### Command-line interface

```
python -m penn
    --audio_files AUDIO_FILES [AUDIO_FILES ...]
    [-h]
    [--config CONFIG]
    [--output_prefixes OUTPUT_PREFIXES [OUTPUT_PREFIXES ...]]
    [--hopsize HOPSIZE]
    [--fmin FMIN]
    [--fmax FMAX]
    [--checkpoint CHECKPOINT]
    [--batch_size BATCH_SIZE]
    [--center {half-window,half-hop,zero}]
    [--interp_unvoiced_at INTERP_UNVOICED_AT]
    [--gpu GPU]

required arguments:
    --audio_files AUDIO_FILES [AUDIO_FILES ...]
        The audio files to process

optional arguments:
    -h, --help
        show this help message and exit
    --config CONFIG
        The configuration file. Defaults to using FCNF0++.
    --output_prefixes OUTPUT_PREFIXES [OUTPUT_PREFIXES ...]
        The files to save pitch and periodicity without extension.
        Defaults to audio_files without extensions.
    --hopsize HOPSIZE
        The hopsize in seconds. Defaults to 0.01 seconds.
    --fmin FMIN
        The minimum frequency allowed in Hz. Defaults to 31.0 Hz.
    --fmax FMAX
        The maximum frequency allowed in Hz. Defaults to 1984.0 Hz.
    --checkpoint CHECKPOINT
        The model checkpoint file. Defaults to ./penn/assets/checkpoints/fcnf0++.pt.
    --batch_size BATCH_SIZE
        The number of frames per batch. Defaults to 2048.
    --center {half-window,half-hop,zero}
        Padding options
  --interp_unvoiced_at INTERP_UNVOICED_AT
        Specifies voicing threshold for interpolation. Defaults to 0.1625.
    --gpu GPU
        The index of the gpu to perform inference on. Defaults to CPU.
```


## Training

### Download

`python -m penn.data.download`

Downloads and uncompresses the `mdb` and `ptdb` datasets used for training.


### Preprocess

`python -m penn.data.preprocess --config <config>`

Converts each dataset to a common format on disk ready for training. You
can optionally pass a configuration file to override the default configuration.


### Partition

`python -m penn.partition`

Generates `train`, `valid`, and `test` partitions for `mdb` and `ptdb`.
Partitioning is deterministic given the same random seed. You do not need to
run this step, as the original partitions are saved in
`penn/assets/partitions`.


### Train

`python -m penn.train --config <config> --gpu <gpu>`

Trains a model according to a given configuration on the `mdb` and `ptdb`
datasets.


### Monitor

You can monitor training via `tensorboard`.

```
tensorboard --logdir runs/ --port <port> --load_fast true
```

To use the `torchutil` notification system to receive notifications for long
jobs (download, preprocess, train, and evaluate), set the
`PYTORCH_NOTIFICATION_URL` environment variable to a supported webhook as
explained in [the Apprise documentation](https://pypi.org/project/apprise/).


## Evaluation

### Evaluate

```
python -m penn.evaluate \
    --config <config> \
    --checkpoint <checkpoint> \
    --gpu <gpu>
```

Evaluate a model. `<checkpoint>` is the checkpoint file to evaluate and `<gpu>`
is the GPU index.


### Plot

```
python -m penn.plot.density \
    --config <config> \
    --true_datasets <true_datasets> \
    --inference_datasets <inference_datasets> \
    --output_file <output_file> \
    --checkpoint <checkpoint> \
    --gpu <gpu>
```

Plot the data distribution and inferred distribution for a given dataset and
save to a jpg file.

```
python -m penn.plot.logits \
    --config <config> \
    --audio_file <audio_file> \
    --output_file <output_file> \
    --checkpoint <checkpoint> \
    --gpu <gpu>
```

Plot the pitch posteriorgram of an audio file and save to a jpg file.

```
python -m penn.plot.thresholds \
    --names <names> \
    --evaluations <evaluations> \
    --output_file <output_file>
```

Plot the periodicity performance (voiced/unvoiced F1) over mdb and ptdb as a
function of the voiced/unvoiced threshold. `names` are the plot labels to give
each evaluation. `evaluations` are the names of the evaluations to plot.


## Citation

### IEEE
M. Morrison, C. Hsieh, N. Pruyne, and B. Pardo, "Cross-domain Neural Pitch and Periodicity Estimation," Submitted to IEEE Transactions on Audio, Speech, and Language Processing, <TODO - month> 2023.


### BibTex

```
@inproceedings{morrison2023cross,
    title={Cross-domain Neural Pitch and Periodicity Estimation},
    author={Morrison, Max and Hsieh, Caedon and Pruyne, Nathan and Pardo, Bryan},
    booktitle={Submitted to IEEE Transactions on Audio, Speech, and Language Processing},
    month={TODO},
    year={2023}
}

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/interactiveaudiolab/penn",
    "name": "penn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "audio,frequency,music,periodicity,pitch,speech",
    "author": "Max Morrison, Caedon Hsieh, Nathan Pruyne, and Bryan Pardo",
    "author_email": "interactiveaudiolab@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/13/14/71617999d02462b14485ed597660bdabe1f3f502c260cb0f2e45dc934327/penn-0.0.12.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">Pitch-Estimating Neural Networks (PENN)</h1>\n<div align=\"center\">\n\n[![PyPI](https://img.shields.io/pypi/v/penn.svg)](https://pypi.python.org/pypi/penn)\n[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)\n[![Downloads](https://static.pepy.tech/badge/penn)](https://pepy.tech/project/penn)\n\n</div>\n\nTraining, evaluation, and inference of neural pitch and periodicity estimators in PyTorch. Includes the original code for the paper [\"Cross-domain Neural Pitch and Periodicity Estimation\"](https://arxiv.org/abs/2301.12258).\n\n\n## Table of contents\n\n- [Installation](#installation)\n- [Inference](#inference)\n    * [Application programming interface](#application-programming-interface)\n        * [`penn.from_audio`](#pennfrom_audio)\n        * [`penn.from_file`](#pennfrom_file)\n        * [`penn.from_file_to_file`](#pennfrom_file_to_file)\n        * [`penn.from_files_to_files`](#pennfrom_files_to_files)\n    * [Command-line interface](#command-line-interface)\n- [Training](#training)\n    * [Download](#download)\n    * [Preprocess](#preprocess)\n    * [Partition](#partition)\n    * [Train](#train)\n    * [Monitor](#monitor)\n- [Evaluation](#evaluation)\n    * [Evaluate](#evaluate)\n    * [Plot](#plot)\n- [Citation](#citation)\n\n\n## Installation\n\nIf you want to perform pitch estimation using a pretrained FCNF0++ model, run\n`pip install penn`\n\nIf you want to train or use your own models, run\n`pip install penn[train]`\n\n\n## Inference\n\nPerform inference using FCNF0++\n\n```\nimport penn\n\n# Load audio\naudio, sample_rate = torchaudio.load('test/assets/gershwin.wav')\n\n# Here we'll use a 10 millisecond hopsize\nhopsize = .01\n\n# Provide a sensible frequency range given your domain and model\nfmin = 30.\nfmax = 1000.\n\n# Choose a gpu index to use for inference. Set to None to use cpu.\ngpu = 0\n\n# If you are using a gpu, pick a batch size that doesn't cause memory errors\n# on your gpu\nbatch_size = 2048\n\n# Select a checkpoint to use for inference. Selecting None will\n# download and use FCNF0++ pretrained on MDB-stem-synth and PTDB\ncheckpoint = None\n\n# Centers frames at hopsize / 2, 3 * hopsize / 2, 5 * hopsize / 2, ...\ncenter = 'half-hop'\n\n# (Optional) Linearly interpolate unvoiced regions below periodicity threshold\ninterp_unvoiced_at = .065\n\n# Infer pitch and periodicity\npitch, periodicity = penn.from_audio(\n    audio,\n    sample_rate,\n    hopsize=hopsize,\n    fmin=fmin,\n    fmax=fmax,\n    checkpoint=checkpoint,\n    batch_size=batch_size,\n    center=center,\n    interp_unvoiced_at=interp_unvoiced_at,\n    gpu=gpu)\n```\n\n\n### Application programming interface\n\n#### `penn.from_audio`\n\n```\n\"\"\"Perform pitch and periodicity estimation\n\nArgs:\n    audio: The audio to extract pitch and periodicity from\n    sample_rate: The audio sample rate\n    hopsize: The hopsize in seconds\n    fmin: The minimum allowable frequency in Hz\n    fmax: The maximum allowable frequency in Hz\n    checkpoint: The checkpoint file\n    batch_size: The number of frames per batch\n    center: Padding options. One of ['half-window', 'half-hop', 'zero'].\n    interp_unvoiced_at: Specifies voicing threshold for interpolation\n    gpu: The index of the gpu to run inference on\n\nReturns:\n    pitch: torch.tensor(\n        shape=(1, int(samples // penn.seconds_to_sample(hopsize))))\n    periodicity: torch.tensor(\n        shape=(1, int(samples // penn.seconds_to_sample(hopsize))))\n\"\"\"\n```\n\n\n#### `penn.from_file`\n\n```\n\"\"\"Perform pitch and periodicity estimation from audio on disk\n\nArgs:\n    file: The audio file\n    hopsize: The hopsize in seconds\n    fmin: The minimum allowable frequency in Hz\n    fmax: The maximum allowable frequency in Hz\n    checkpoint: The checkpoint file\n    batch_size: The number of frames per batch\n    center: Padding options. One of ['half-window', 'half-hop', 'zero'].\n    interp_unvoiced_at: Specifies voicing threshold for interpolation\n    gpu: The index of the gpu to run inference on\n\nReturns:\n    pitch: torch.tensor(shape=(1, int(samples // hopsize)))\n    periodicity: torch.tensor(shape=(1, int(samples // hopsize)))\n\"\"\"\n```\n\n\n#### `penn.from_file_to_file`\n\n```\n\"\"\"Perform pitch and periodicity estimation from audio on disk and save\n\nArgs:\n    file: The audio file\n    output_prefix: The file to save pitch and periodicity without extension\n    hopsize: The hopsize in seconds\n    fmin: The minimum allowable frequency in Hz\n    fmax: The maximum allowable frequency in Hz\n    checkpoint: The checkpoint file\n    batch_size: The number of frames per batch\n    center: Padding options. One of ['half-window', 'half-hop', 'zero'].\n    interp_unvoiced_at: Specifies voicing threshold for interpolation\n    gpu: The index of the gpu to run inference on\n\"\"\"\n```\n\n\n#### `penn.from_files_to_files`\n\n```\n\"\"\"Perform pitch and periodicity estimation from files on disk and save\n\nArgs:\n    files: The audio files\n    output_prefixes: Files to save pitch and periodicity without extension\n    hopsize: The hopsize in seconds\n    fmin: The minimum allowable frequency in Hz\n    fmax: The maximum allowable frequency in Hz\n    checkpoint: The checkpoint file\n    batch_size: The number of frames per batch\n    center: Padding options. One of ['half-window', 'half-hop', 'zero'].\n    interp_unvoiced_at: Specifies voicing threshold for interpolation\n    gpu: The index of the gpu to run inference on\n\"\"\"\n```\n\n\n### Command-line interface\n\n```\npython -m penn\n    --audio_files AUDIO_FILES [AUDIO_FILES ...]\n    [-h]\n    [--config CONFIG]\n    [--output_prefixes OUTPUT_PREFIXES [OUTPUT_PREFIXES ...]]\n    [--hopsize HOPSIZE]\n    [--fmin FMIN]\n    [--fmax FMAX]\n    [--checkpoint CHECKPOINT]\n    [--batch_size BATCH_SIZE]\n    [--center {half-window,half-hop,zero}]\n    [--interp_unvoiced_at INTERP_UNVOICED_AT]\n    [--gpu GPU]\n\nrequired arguments:\n    --audio_files AUDIO_FILES [AUDIO_FILES ...]\n        The audio files to process\n\noptional arguments:\n    -h, --help\n        show this help message and exit\n    --config CONFIG\n        The configuration file. Defaults to using FCNF0++.\n    --output_prefixes OUTPUT_PREFIXES [OUTPUT_PREFIXES ...]\n        The files to save pitch and periodicity without extension.\n        Defaults to audio_files without extensions.\n    --hopsize HOPSIZE\n        The hopsize in seconds. Defaults to 0.01 seconds.\n    --fmin FMIN\n        The minimum frequency allowed in Hz. Defaults to 31.0 Hz.\n    --fmax FMAX\n        The maximum frequency allowed in Hz. Defaults to 1984.0 Hz.\n    --checkpoint CHECKPOINT\n        The model checkpoint file. Defaults to ./penn/assets/checkpoints/fcnf0++.pt.\n    --batch_size BATCH_SIZE\n        The number of frames per batch. Defaults to 2048.\n    --center {half-window,half-hop,zero}\n        Padding options\n  --interp_unvoiced_at INTERP_UNVOICED_AT\n        Specifies voicing threshold for interpolation. Defaults to 0.1625.\n    --gpu GPU\n        The index of the gpu to perform inference on. Defaults to CPU.\n```\n\n\n## Training\n\n### Download\n\n`python -m penn.data.download`\n\nDownloads and uncompresses the `mdb` and `ptdb` datasets used for training.\n\n\n### Preprocess\n\n`python -m penn.data.preprocess --config <config>`\n\nConverts each dataset to a common format on disk ready for training. You\ncan optionally pass a configuration file to override the default configuration.\n\n\n### Partition\n\n`python -m penn.partition`\n\nGenerates `train`, `valid`, and `test` partitions for `mdb` and `ptdb`.\nPartitioning is deterministic given the same random seed. You do not need to\nrun this step, as the original partitions are saved in\n`penn/assets/partitions`.\n\n\n### Train\n\n`python -m penn.train --config <config> --gpu <gpu>`\n\nTrains a model according to a given configuration on the `mdb` and `ptdb`\ndatasets.\n\n\n### Monitor\n\nYou can monitor training via `tensorboard`.\n\n```\ntensorboard --logdir runs/ --port <port> --load_fast true\n```\n\nTo use the `torchutil` notification system to receive notifications for long\njobs (download, preprocess, train, and evaluate), set the\n`PYTORCH_NOTIFICATION_URL` environment variable to a supported webhook as\nexplained in [the Apprise documentation](https://pypi.org/project/apprise/).\n\n\n## Evaluation\n\n### Evaluate\n\n```\npython -m penn.evaluate \\\n    --config <config> \\\n    --checkpoint <checkpoint> \\\n    --gpu <gpu>\n```\n\nEvaluate a model. `<checkpoint>` is the checkpoint file to evaluate and `<gpu>`\nis the GPU index.\n\n\n### Plot\n\n```\npython -m penn.plot.density \\\n    --config <config> \\\n    --true_datasets <true_datasets> \\\n    --inference_datasets <inference_datasets> \\\n    --output_file <output_file> \\\n    --checkpoint <checkpoint> \\\n    --gpu <gpu>\n```\n\nPlot the data distribution and inferred distribution for a given dataset and\nsave to a jpg file.\n\n```\npython -m penn.plot.logits \\\n    --config <config> \\\n    --audio_file <audio_file> \\\n    --output_file <output_file> \\\n    --checkpoint <checkpoint> \\\n    --gpu <gpu>\n```\n\nPlot the pitch posteriorgram of an audio file and save to a jpg file.\n\n```\npython -m penn.plot.thresholds \\\n    --names <names> \\\n    --evaluations <evaluations> \\\n    --output_file <output_file>\n```\n\nPlot the periodicity performance (voiced/unvoiced F1) over mdb and ptdb as a\nfunction of the voiced/unvoiced threshold. `names` are the plot labels to give\neach evaluation. `evaluations` are the names of the evaluations to plot.\n\n\n## Citation\n\n### IEEE\nM. Morrison, C. Hsieh, N. Pruyne, and B. Pardo, \"Cross-domain Neural Pitch and Periodicity Estimation,\" Submitted to IEEE Transactions on Audio, Speech, and Language Processing, <TODO - month> 2023.\n\n\n### BibTex\n\n```\n@inproceedings{morrison2023cross,\n    title={Cross-domain Neural Pitch and Periodicity Estimation},\n    author={Morrison, Max and Hsieh, Caedon and Pruyne, Nathan and Pardo, Bryan},\n    booktitle={Submitted to IEEE Transactions on Audio, Speech, and Language Processing},\n    month={TODO},\n    year={2023}\n}\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Pitch Estimating Neural Networks (PENN)",
    "version": "0.0.12",
    "project_urls": {
        "Homepage": "https://github.com/interactiveaudiolab/penn"
    },
    "split_keywords": [
        "audio",
        "frequency",
        "music",
        "periodicity",
        "pitch",
        "speech"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ccb7f11c7012d83848dbd32cba517c5f41fc50de13a0851f7285ecee38ec58e",
                "md5": "2f3e1e8959e2513642b3d425e9bd4bc3",
                "sha256": "c068fa794f25f04f15093267baf0a5a3ee917f9fcbeda396a003d46c6f1aa1b8"
            },
            "downloads": -1,
            "filename": "penn-0.0.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f3e1e8959e2513642b3d425e9bd4bc3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 61456,
            "upload_time": "2023-11-07T17:44:49",
            "upload_time_iso_8601": "2023-11-07T17:44:49.582431Z",
            "url": "https://files.pythonhosted.org/packages/7c/cb/7f11c7012d83848dbd32cba517c5f41fc50de13a0851f7285ecee38ec58e/penn-0.0.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "131471617999d02462b14485ed597660bdabe1f3f502c260cb0f2e45dc934327",
                "md5": "de967a78f4589007a5e3367a2fe682e3",
                "sha256": "53840523841f5cd783615a505ada9e399c9f969f6f4afb518beb306c6bddeccd"
            },
            "downloads": -1,
            "filename": "penn-0.0.12.tar.gz",
            "has_sig": false,
            "md5_digest": "de967a78f4589007a5e3367a2fe682e3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 53482,
            "upload_time": "2023-11-07T17:44:51",
            "upload_time_iso_8601": "2023-11-07T17:44:51.898018Z",
            "url": "https://files.pythonhosted.org/packages/13/14/71617999d02462b14485ed597660bdabe1f3f502c260cb0f2e45dc934327/penn-0.0.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-07 17:44:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "interactiveaudiolab",
    "github_project": "penn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "penn"
}
        
Elapsed time: 0.16840s