| Name | pepperpy JSON |
| Version |
1.5.0
JSON |
| download |
| home_page | None |
| Summary | A centralized hub for managing and loading AI artifacts like agents, prompts, and workflows |
| upload_time | 2025-02-12 14:08:41 |
| maintainer | None |
| docs_url | None |
| author | Your Name |
| requires_python | <4.0,>=3.12 |
| license | None |
| keywords |
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# Pepperpy
A powerful AI agent framework with zero-config capabilities.
## Features
- 🚀 **Zero-Config Setup**: Get started quickly with sensible defaults
- 🤖 **Flexible Agent System**: Create and manage AI agents with ease
- 🔄 **Built-in Workflows**: Pre-defined workflows for common tasks
- 💾 **Automatic Caching**: Reduce costs and improve performance
- 🔌 **Plugin Architecture**: Extend functionality through hooks
- 📊 **Integrated Monitoring**: Built-in logging and metrics
- 🛠️ **CLI Tools**: Command-line interface for quick testing
## Installation
```bash
# Install using Poetry (recommended)
poetry add pepperpy
# Or using pip
pip install pepperpy
```
## Quick Start
```python
from pepperpy import PepperpyClient
async def main():
# Auto-configured client
async with PepperpyClient.auto() as client:
# Simple research example
results = await client.run(
"research_assistant",
"analyze",
topic="AI in Healthcare",
max_sources=5
)
print(results.summary)
# Advanced workflow example
results = await client.run_workflow(
"research/comprehensive",
topic="AI in Healthcare",
requirements={
"depth": "expert",
"focus": ["academic", "industry"]
}
)
print(results.key_findings)
# Run the example
import asyncio
asyncio.run(main())
```
## Configuration
Pepperpy can be configured through:
1. Environment variables (`.env` file)
2. Configuration file (`.pepperpy/config.yml`)
3. Programmatic configuration
Example `.env` file:
```bash
PEPPERPY_API_KEY=your-api-key
PEPPERPY_PROVIDER=openai
PEPPERPY_MODEL=gpt-4-turbo-preview
```
Example `config.yml`:
```yaml
provider:
type: openai
model: gpt-4-turbo-preview
temperature: 0.7
memory:
type: redis
url: redis://localhost:6379
cache:
enabled: true
store: memory
```
## CLI Usage
```bash
# Run a research task
pepperpy run agent research_assistant --topic "AI in Healthcare"
# Execute a workflow
pepperpy run workflow research/comprehensive --topic "AI in Healthcare"
# List available agents
pepperpy list agents
# Show configuration
pepperpy config show
```
## Advanced Usage
### Custom Hooks
```python
def my_logger_hook(context):
print(f"Processing: {context.current_step}")
client.register_hook("after_agent_call", my_logger_hook)
```
### Cache Configuration
```python
# Enable caching with Redis
client = PepperpyClient(
cache_enabled=True,
cache_store="redis",
cache_config={
"url": "redis://localhost:6379"
}
)
```
### Custom Workflows
```python
# Define a workflow in .pepper_hub/workflows/custom.yml
name: my_workflow
steps:
- agent: research_assistant
action: analyze
params:
depth: comprehensive
- agent: summarizer
action: summarize
params:
style: concise
# Run the workflow
results = await client.run_workflow("my_workflow", topic="...")
```
## Development
```bash
# Clone the repository
git clone https://github.com/yourusername/pepperpy.git
cd pepperpy
# Install dependencies
poetry install
# Run tests
poetry run pytest
# Run linters
poetry run black .
poetry run ruff check .
poetry run mypy .
```
## Contributing
Contributions are welcome! Please read our [Contributing Guide](CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "pepperpy",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.12",
"maintainer_email": null,
"keywords": null,
"author": "Your Name",
"author_email": "your.email@example.com",
"download_url": "https://files.pythonhosted.org/packages/38/fc/61f6858b76fccee70ec0e024f2184a5071b5ae4f595b57a58e38d9599044/pepperpy-1.5.0.tar.gz",
"platform": null,
"description": "# Pepperpy\n\nA powerful AI agent framework with zero-config capabilities.\n\n## Features\n\n- \ud83d\ude80 **Zero-Config Setup**: Get started quickly with sensible defaults\n- \ud83e\udd16 **Flexible Agent System**: Create and manage AI agents with ease\n- \ud83d\udd04 **Built-in Workflows**: Pre-defined workflows for common tasks\n- \ud83d\udcbe **Automatic Caching**: Reduce costs and improve performance\n- \ud83d\udd0c **Plugin Architecture**: Extend functionality through hooks\n- \ud83d\udcca **Integrated Monitoring**: Built-in logging and metrics\n- \ud83d\udee0\ufe0f **CLI Tools**: Command-line interface for quick testing\n\n## Installation\n\n```bash\n# Install using Poetry (recommended)\npoetry add pepperpy\n\n# Or using pip\npip install pepperpy\n```\n\n## Quick Start\n\n```python\nfrom pepperpy import PepperpyClient\n\nasync def main():\n # Auto-configured client\n async with PepperpyClient.auto() as client:\n # Simple research example\n results = await client.run(\n \"research_assistant\",\n \"analyze\",\n topic=\"AI in Healthcare\",\n max_sources=5\n )\n print(results.summary)\n\n # Advanced workflow example\n results = await client.run_workflow(\n \"research/comprehensive\",\n topic=\"AI in Healthcare\",\n requirements={\n \"depth\": \"expert\",\n \"focus\": [\"academic\", \"industry\"]\n }\n )\n print(results.key_findings)\n\n# Run the example\nimport asyncio\nasyncio.run(main())\n```\n\n## Configuration\n\nPepperpy can be configured through:\n\n1. Environment variables (`.env` file)\n2. Configuration file (`.pepperpy/config.yml`)\n3. Programmatic configuration\n\nExample `.env` file:\n```bash\nPEPPERPY_API_KEY=your-api-key\nPEPPERPY_PROVIDER=openai\nPEPPERPY_MODEL=gpt-4-turbo-preview\n```\n\nExample `config.yml`:\n```yaml\nprovider:\n type: openai\n model: gpt-4-turbo-preview\n temperature: 0.7\n\nmemory:\n type: redis\n url: redis://localhost:6379\n\ncache:\n enabled: true\n store: memory\n```\n\n## CLI Usage\n\n```bash\n# Run a research task\npepperpy run agent research_assistant --topic \"AI in Healthcare\"\n\n# Execute a workflow\npepperpy run workflow research/comprehensive --topic \"AI in Healthcare\"\n\n# List available agents\npepperpy list agents\n\n# Show configuration\npepperpy config show\n```\n\n## Advanced Usage\n\n### Custom Hooks\n\n```python\ndef my_logger_hook(context):\n print(f\"Processing: {context.current_step}\")\n\nclient.register_hook(\"after_agent_call\", my_logger_hook)\n```\n\n### Cache Configuration\n\n```python\n# Enable caching with Redis\nclient = PepperpyClient(\n cache_enabled=True,\n cache_store=\"redis\",\n cache_config={\n \"url\": \"redis://localhost:6379\"\n }\n)\n```\n\n### Custom Workflows\n\n```python\n# Define a workflow in .pepper_hub/workflows/custom.yml\nname: my_workflow\nsteps:\n - agent: research_assistant\n action: analyze\n params:\n depth: comprehensive\n - agent: summarizer\n action: summarize\n params:\n style: concise\n\n# Run the workflow\nresults = await client.run_workflow(\"my_workflow\", topic=\"...\")\n```\n\n## Development\n\n```bash\n# Clone the repository\ngit clone https://github.com/yourusername/pepperpy.git\ncd pepperpy\n\n# Install dependencies\npoetry install\n\n# Run tests\npoetry run pytest\n\n# Run linters\npoetry run black .\npoetry run ruff check .\npoetry run mypy .\n```\n\n## Contributing\n\nContributions are welcome! Please read our [Contributing Guide](CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "A centralized hub for managing and loading AI artifacts like agents, prompts, and workflows",
"version": "1.5.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ff762e36252ee599c0a4add6d6abbc539992f4afff426ecdba181b55358c96ac",
"md5": "9f3f0912f20a26cd00f628d385e97972",
"sha256": "e77ce2812acdb522fc6cb328c1769123f1c6a0dd07ae4ecca5bb5d806fc1cd60"
},
"downloads": -1,
"filename": "pepperpy-1.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9f3f0912f20a26cd00f628d385e97972",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.12",
"size": 212908,
"upload_time": "2025-02-12T14:08:39",
"upload_time_iso_8601": "2025-02-12T14:08:39.216186Z",
"url": "https://files.pythonhosted.org/packages/ff/76/2e36252ee599c0a4add6d6abbc539992f4afff426ecdba181b55358c96ac/pepperpy-1.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "38fc61f6858b76fccee70ec0e024f2184a5071b5ae4f595b57a58e38d9599044",
"md5": "ae562dbad0b544d43e92863d019654d6",
"sha256": "64fb7fbf3e3663a151f96ad338995266d96b9ab1deb5f0baa57e486b253992f7"
},
"downloads": -1,
"filename": "pepperpy-1.5.0.tar.gz",
"has_sig": false,
"md5_digest": "ae562dbad0b544d43e92863d019654d6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.12",
"size": 144036,
"upload_time": "2025-02-12T14:08:41",
"upload_time_iso_8601": "2025-02-12T14:08:41.548580Z",
"url": "https://files.pythonhosted.org/packages/38/fc/61f6858b76fccee70ec0e024f2184a5071b5ae4f595b57a58e38d9599044/pepperpy-1.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-12 14:08:41",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pepperpy"
}