perfplot


Nameperfplot JSON
Version 0.11.1 PyPI version JSON
download
home_page
SummaryPerformance plots for Python code snippets
upload_time2023-01-27 21:25:18
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords performance profile
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://github.com/nschloe/perfplot"><img alt="perfplot" src="https://nschloe.github.io/perfplot/logo-perfplot.svg" width="60%"></a>
</p>

[![PyPi Version](https://img.shields.io/pypi/v/perfplot.svg?style=flat-square)](https://pypi.org/project/perfplot)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/perfplot.svg?style=flat-square)](https://pypi.org/pypi/perfplot/)
[![GitHub stars](https://img.shields.io/github/stars/nschloe/perfplot.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/perfplot)
[![Downloads](https://pepy.tech/badge/perfplot/month)](https://pepy.tech/project/perfplot)

<!--[![PyPi downloads](https://img.shields.io/pypi/dm/perfplot.svg?style=flat-square)](https://pypistats.org/packages/perfplot)-->

[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)

perfplot extends Python's
[timeit](https://docs.python.org/3/library/timeit.html) by testing snippets
with input parameters (e.g., the size of an array) and plotting the results.

For example, to compare different NumPy array concatenation methods, the script

```python
import numpy as np
import perfplot

perfplot.show(
    setup=lambda n: np.random.rand(n),  # or setup=np.random.rand
    kernels=[
        lambda a: np.c_[a, a],
        lambda a: np.stack([a, a]).T,
        lambda a: np.vstack([a, a]).T,
        lambda a: np.column_stack([a, a]),
        lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2**k for k in range(25)],
    xlabel="len(a)",
    # More optional arguments with their default values:
    # xscale="auto",  # "log", "linear", or "auto"
    # yscale="auto",
    # equality_check=np.allclose,  # set to None to disable "correctness" assertion
    # show_progress=True,
    # target_time_per_measurement=1.0,
    # max_time=None,  # maximum time per measurement
    # time_unit="s",  # set to one of ("auto", "s", "ms", "us", or "ns") to force plot units
    # relative_to=1,  # plot the timings relative to one of the measurements
    # flops=lambda n: 3*n,  # FLOPS plots
)
```

produces

| ![](https://nschloe.github.io/perfplot/concat.svg) | ![](https://nschloe.github.io/perfplot/relative.svg) |
| -------------------------------------------------- | ---------------------------------------------------- |

Clearly, `stack` and `vstack` are the best options for large arrays.

(By default, perfplot asserts the equality of the output of all snippets, too.)

If your plot takes a while to generate, you can also use

<!--pytest.mark.skip-->

```python
perfplot.live(
    # ...
)
```

<img alt="live" src="https://nschloe.github.io/perfplot/live.gif" width="40%">

with the same arguments as above. It will plot the updates live.

Benchmarking and plotting can be separated. This allows multiple plots of the same data,
for example:

<!--pytest.mark.skip-->

```python
out = perfplot.bench(
    # same arguments as above (except the plot-related ones, like time_unit or log*)
)
out.show()
out.save("perf.png", transparent=True, bbox_inches="tight")
```

Other examples:

- [Making a flat list out of list of lists in Python](https://stackoverflow.com/a/45323085/353337)
- [Most efficient way to map function over numpy array](https://stackoverflow.com/a/46470401/353337)
- [numpy: most efficient frequency counts for unique values in an array](https://stackoverflow.com/a/43096495/353337)
- [Most efficient way to reverse a numpy array](https://stackoverflow.com/a/44921013/353337)
- [How to add an extra column to an numpy array](https://stackoverflow.com/a/40218298/353337)
- [Initializing numpy matrix to something other than zero or one](https://stackoverflow.com/a/45006691/353337)

### Installation

perfplot is [available from the Python Package
Index](https://pypi.org/project/perfplot/), so simply do

```
pip install perfplot
```

to install.

### Testing

To run the perfplot unit tests, check out this repository and type

```
tox
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "perfplot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "performance,profile",
    "author": "",
    "author_email": "Nico Schl\u00f6mer <nico.schloemer@gmail.com>",
    "download_url": "",
    "platform": null,
    "description": "<p align=\"center\">\n  <a href=\"https://github.com/nschloe/perfplot\"><img alt=\"perfplot\" src=\"https://nschloe.github.io/perfplot/logo-perfplot.svg\" width=\"60%\"></a>\n</p>\n\n[![PyPi Version](https://img.shields.io/pypi/v/perfplot.svg?style=flat-square)](https://pypi.org/project/perfplot)\n[![PyPI pyversions](https://img.shields.io/pypi/pyversions/perfplot.svg?style=flat-square)](https://pypi.org/pypi/perfplot/)\n[![GitHub stars](https://img.shields.io/github/stars/nschloe/perfplot.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/perfplot)\n[![Downloads](https://pepy.tech/badge/perfplot/month)](https://pepy.tech/project/perfplot)\n\n<!--[![PyPi downloads](https://img.shields.io/pypi/dm/perfplot.svg?style=flat-square)](https://pypistats.org/packages/perfplot)-->\n\n[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/hnTJ5MRX2Y)\n\nperfplot extends Python's\n[timeit](https://docs.python.org/3/library/timeit.html) by testing snippets\nwith input parameters (e.g., the size of an array) and plotting the results.\n\nFor example, to compare different NumPy array concatenation methods, the script\n\n```python\nimport numpy as np\nimport perfplot\n\nperfplot.show(\n    setup=lambda n: np.random.rand(n),  # or setup=np.random.rand\n    kernels=[\n        lambda a: np.c_[a, a],\n        lambda a: np.stack([a, a]).T,\n        lambda a: np.vstack([a, a]).T,\n        lambda a: np.column_stack([a, a]),\n        lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),\n    ],\n    labels=[\"c_\", \"stack\", \"vstack\", \"column_stack\", \"concat\"],\n    n_range=[2**k for k in range(25)],\n    xlabel=\"len(a)\",\n    # More optional arguments with their default values:\n    # xscale=\"auto\",  # \"log\", \"linear\", or \"auto\"\n    # yscale=\"auto\",\n    # equality_check=np.allclose,  # set to None to disable \"correctness\" assertion\n    # show_progress=True,\n    # target_time_per_measurement=1.0,\n    # max_time=None,  # maximum time per measurement\n    # time_unit=\"s\",  # set to one of (\"auto\", \"s\", \"ms\", \"us\", or \"ns\") to force plot units\n    # relative_to=1,  # plot the timings relative to one of the measurements\n    # flops=lambda n: 3*n,  # FLOPS plots\n)\n```\n\nproduces\n\n| ![](https://nschloe.github.io/perfplot/concat.svg) | ![](https://nschloe.github.io/perfplot/relative.svg) |\n| -------------------------------------------------- | ---------------------------------------------------- |\n\nClearly, `stack` and `vstack` are the best options for large arrays.\n\n(By default, perfplot asserts the equality of the output of all snippets, too.)\n\nIf your plot takes a while to generate, you can also use\n\n<!--pytest.mark.skip-->\n\n```python\nperfplot.live(\n    # ...\n)\n```\n\n<img alt=\"live\" src=\"https://nschloe.github.io/perfplot/live.gif\" width=\"40%\">\n\nwith the same arguments as above. It will plot the updates live.\n\nBenchmarking and plotting can be separated. This allows multiple plots of the same data,\nfor example:\n\n<!--pytest.mark.skip-->\n\n```python\nout = perfplot.bench(\n    # same arguments as above (except the plot-related ones, like time_unit or log*)\n)\nout.show()\nout.save(\"perf.png\", transparent=True, bbox_inches=\"tight\")\n```\n\nOther examples:\n\n- [Making a flat list out of list of lists in Python](https://stackoverflow.com/a/45323085/353337)\n- [Most efficient way to map function over numpy array](https://stackoverflow.com/a/46470401/353337)\n- [numpy: most efficient frequency counts for unique values in an array](https://stackoverflow.com/a/43096495/353337)\n- [Most efficient way to reverse a numpy array](https://stackoverflow.com/a/44921013/353337)\n- [How to add an extra column to an numpy array](https://stackoverflow.com/a/40218298/353337)\n- [Initializing numpy matrix to something other than zero or one](https://stackoverflow.com/a/45006691/353337)\n\n### Installation\n\nperfplot is [available from the Python Package\nIndex](https://pypi.org/project/perfplot/), so simply do\n\n```\npip install perfplot\n```\n\nto install.\n\n### Testing\n\nTo run the perfplot unit tests, check out this repository and type\n\n```\ntox\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Performance plots for Python code snippets",
    "version": "0.11.1",
    "split_keywords": [
        "performance",
        "profile"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "80a844a0411bd63165daba48496ec5be90b142dee6af367cc39371882070ada5",
                "md5": "729795d492f87821df27727a2bc36c60",
                "sha256": "a2f97f71521fb51d5e1aa8f73ffc33a19e986b305cc763193494859c0dc52471"
            },
            "downloads": -1,
            "filename": "perfplot-0.11.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "729795d492f87821df27727a2bc36c60",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 21280,
            "upload_time": "2023-01-27T21:25:18",
            "upload_time_iso_8601": "2023-01-27T21:25:18.383652Z",
            "url": "https://files.pythonhosted.org/packages/80/a8/44a0411bd63165daba48496ec5be90b142dee6af367cc39371882070ada5/perfplot-0.11.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-27 21:25:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "perfplot"
}
        
Elapsed time: 0.09847s