perfwatch


Nameperfwatch JSON
Version 1.6.5 PyPI version JSON
download
home_pageNone
SummaryPython code performace metrics calculation tool
upload_time2024-08-21 05:21:55
maintainerNone
docs_urlNone
authorKhushiyant
requires_python<4.0,>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Perfwatch

Perfwatch is a python package that allows you to monitor the performance of your code. It is designed to be used in a Jupyter notebook, but can also be used in a Python script.

## Table of Contents

- [Installation](#installation)
- [Usage](#usage)
- [Development](#development)
- [Usage](#usage)
    - [Available Profiler Types](#available-profiler-types)
    - [Basic Usage](#basic-usage)
    - [Customizing Profiling](#customizing-profiling)
    - [Logging](#logging)
- [License](#license)

## Installation

To install perfwatch, run the following command:

```bash
pip install perfwatch
```

## Development

To install perfwatch for development, clone the repository and run the following command:

```bash
poetry install
```
To setup pre-commit hooks, run the following command:

```bash
poetry run pre-commit install
```

To run the tests, run the following command:

```bash
poetry run pytest
```

## Usage

### Available Profiler Types

The profiler supports the following profiler types:

-   `cpu`: Profiles CPU usage using the `cProfile` module.
-   `memory`: Profiles memory usage using the `memory_profiler` module.
-   `thread`: Profiles thread creation and usage.
-   `io`: Profiles I/O operations.
-   `network`: Profiles network traffic using the `NetworkProfiler` class.
-   `gpu`: Profiles GPU usage using the `GPUProfiler` class.
-   `cache`: Profiles cache performance (not implemented).
-   `exception`: Profiles exception handling (not implemented).
-   `system`: Profiles system performance (not implemented).
-   `distributed`: Profiles distributed system performance (not implemented).
-   `line`: Profiles line-by-line execution using the `line_profiler` module.
-   `time`: Profiles execution time.


### Basic Usage
```python
from perfwatch import watch

@watch(["line", "cpu", "time"])
def test():
    for _ in range(1000000):
        pass

if __name__ == "__main__":
    test()
```

#### Customizing Profiling

You can customize the profiling behavior by passing additional keyword arguments to the `watch` decorator. For example:

```python
@watch(["network"], packet_src="localhost")
def my_function(x, y):
    # function implementation
    pass
```

#### Logging

You can log the profiling results to a file by assigning `LOG_FILE_PATH` envar to desired file location

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "perfwatch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Khushiyant",
    "author_email": "khushiyant2002@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c0/73/b7f67ea4bad7b4a6b07ae121d687969fdf4baa4a66a1a9f3e1ee0de6b1f4/perfwatch-1.6.5.tar.gz",
    "platform": null,
    "description": "# Perfwatch\n\nPerfwatch is a python package that allows you to monitor the performance of your code. It is designed to be used in a Jupyter notebook, but can also be used in a Python script.\n\n## Table of Contents\n\n- [Installation](#installation)\n- [Usage](#usage)\n- [Development](#development)\n- [Usage](#usage)\n    - [Available Profiler Types](#available-profiler-types)\n    - [Basic Usage](#basic-usage)\n    - [Customizing Profiling](#customizing-profiling)\n    - [Logging](#logging)\n- [License](#license)\n\n## Installation\n\nTo install perfwatch, run the following command:\n\n```bash\npip install perfwatch\n```\n\n## Development\n\nTo install perfwatch for development, clone the repository and run the following command:\n\n```bash\npoetry install\n```\nTo setup pre-commit hooks, run the following command:\n\n```bash\npoetry run pre-commit install\n```\n\nTo run the tests, run the following command:\n\n```bash\npoetry run pytest\n```\n\n## Usage\n\n### Available Profiler Types\n\nThe profiler supports the following profiler types:\n\n-   `cpu`: Profiles CPU usage using the\u00a0`cProfile`\u00a0module.\n-   `memory`: Profiles memory usage using the\u00a0`memory_profiler`\u00a0module.\n-   `thread`: Profiles thread creation and usage.\n-   `io`: Profiles I/O operations.\n-   `network`: Profiles network traffic using the\u00a0`NetworkProfiler`\u00a0class.\n-   `gpu`: Profiles GPU usage using the\u00a0`GPUProfiler`\u00a0class.\n-   `cache`: Profiles cache performance (not implemented).\n-   `exception`: Profiles exception handling (not implemented).\n-   `system`: Profiles system performance (not implemented).\n-   `distributed`: Profiles distributed system performance (not implemented).\n-   `line`: Profiles line-by-line execution using the\u00a0`line_profiler`\u00a0module.\n-   `time`: Profiles execution time.\n\n\n### Basic Usage\n```python\nfrom perfwatch import watch\n\n@watch([\"line\", \"cpu\", \"time\"])\ndef test():\n    for _ in range(1000000):\n        pass\n\nif __name__ == \"__main__\":\n    test()\n```\n\n#### Customizing Profiling\n\nYou can customize the profiling behavior by passing additional keyword arguments to the\u00a0`watch`\u00a0decorator. For example:\n\n```python\n@watch([\"network\"], packet_src=\"localhost\")\ndef my_function(x, y):\n    # function implementation\n    pass\n```\n\n#### Logging\n\nYou can log the profiling results to a file by assigning `LOG_FILE_PATH` envar to desired file location\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python code performace metrics calculation tool",
    "version": "1.6.5",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "01bd4a75abf4a8dc26cb404a3efc32b58af19e0f981f17c50dd0845a8c0de1e7",
                "md5": "a5bf9e9b0057685572a70bb2b367175b",
                "sha256": "b7011e4164ae68c9ebfd949fa47d17c47c313881a99cefccfca417ae5a3cf987"
            },
            "downloads": -1,
            "filename": "perfwatch-1.6.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a5bf9e9b0057685572a70bb2b367175b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 11756,
            "upload_time": "2024-08-21T05:21:53",
            "upload_time_iso_8601": "2024-08-21T05:21:53.916786Z",
            "url": "https://files.pythonhosted.org/packages/01/bd/4a75abf4a8dc26cb404a3efc32b58af19e0f981f17c50dd0845a8c0de1e7/perfwatch-1.6.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c073b7f67ea4bad7b4a6b07ae121d687969fdf4baa4a66a1a9f3e1ee0de6b1f4",
                "md5": "d8726aa1ba5e1bbc4eac4d1b96276550",
                "sha256": "f5557b235a241669496405709c163aeb1eaa3583c27bd3216615eaa2b2352a11"
            },
            "downloads": -1,
            "filename": "perfwatch-1.6.5.tar.gz",
            "has_sig": false,
            "md5_digest": "d8726aa1ba5e1bbc4eac4d1b96276550",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 7956,
            "upload_time": "2024-08-21T05:21:55",
            "upload_time_iso_8601": "2024-08-21T05:21:55.057782Z",
            "url": "https://files.pythonhosted.org/packages/c0/73/b7f67ea4bad7b4a6b07ae121d687969fdf4baa4a66a1a9f3e1ee0de6b1f4/perfwatch-1.6.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-21 05:21:55",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "perfwatch"
}
        
Elapsed time: 0.32879s