<p align="center">
<img height="120" src="https://github.com/perpetual-ml/perpetual/raw/main/resources/perp_logo.png">
</p>
<div align="center">
[![Python Versions](https://img.shields.io/pypi/pyversions/perpetual.svg?logo=python&logoColor=white)](https://pypi.org/project/perpetual)
[![PyPI Version](https://img.shields.io/pypi/v/perpetual.svg?logo=pypi&logoColor=white)](https://pypi.org/project/perpetual)
[![Crates.io Version](https://img.shields.io/crates/v/perpetual?logo=rust&logoColor=white)](https://crates.io/crates/perpetual)
[![Static Badge](https://img.shields.io/badge/join-discord-blue?logo=discord)](https://discord.gg/AyUK7rr6wy)
![PyPI - Downloads](https://img.shields.io/pypi/dm/perpetual)
</div>
# Perpetual
PerpetualBooster is a gradient boosting machine (GBM) algorithm which doesn't need hyperparameter optimization unlike other GBM algorithms. Similar to AutoML libraries, it has a `budget` parameter. Increasing the `budget` parameter increases the predictive power of the algorithm and gives better results on unseen data. Start with a small budget (e.g. 1.0) and increase it (e.g. 2.0) once you are confident with your features. If you don't see any improvement with further increasing the `budget`, it means that you are already extracting the most predictive power out of your data.
## Benchmark
Hyperparameter optimization usually takes 100 iterations with plain GBM algorithms. PerpetualBooster achieves the same accuracy in a single run. Thus, it achieves up to 100x speed-up at the same accuracy with different `budget` levels and with different datasets.
The following table summarizes the results for the [California Housing](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html) dataset (regression):
| Perpetual budget | LightGBM n_estimators | Perpetual mse | LightGBM mse | Speed-up wall time | Speed-up cpu time |
| ---------------- | --------------------- | ------------- | ------------ | ------------------ | ----------------- |
| 1.0 | 100 | 0.192 | 0.192 | 54x | 56x |
| 1.5 | 300 | 0.188 | 0.188 | 59x | 58x |
| 2.1 | 1000 | 0.185 | 0.186 | 42x | 41x |
The following table summarizes the results for the [Cover Types](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html) dataset (classification):
| Perpetual budget | LightGBM n_estimators | Perpetual log loss | LightGBM log loss | Speed-up wall time | Speed-up cpu time |
| ---------------- | --------------------- | ------------------ | ----------------- | ------------------ | ----------------- |
| 0.9 | 100 | 0.091 | 0.084 | 72x | 78x |
The results can be reproduced using the scripts in the [examples](./python-package/examples) folder.
PerpetualBooster is a GBM but behaves like AutoML so it is benchmarked also against AutoGluon (v1.2, best quality preset), the current leader in [AutoML benchmark](https://automlbenchmark.streamlit.app/cd_diagram). Top 10 datasets with the most number of rows are selected from [OpenML datasets](https://www.openml.org/). The results are summarized in the following table for regression tasks:
| OpenML Task | Perpetual Training Duration | Perpetual Inference Duration | Perpetual RMSE | AutoGluon Training Duration | AutoGluon Inference Duration | AutoGluon RMSE |
| -------------------------------------------- | --------------------------- | ----------------------------------------------------------------- | -------------- | --------------------------- | ----------------------------------------------------------------- | -------------- |
| [Airlines_DepDelay_10M](openml.org/t/359929) | 518 | 11.3 | 29.0 | 520 | 30.9 <td style="background-color:green;color:white;"> 28.8 </td> |
| [bates_regr_100](openml.org/t/361940) | 3421 | 15.1 <td style="background-color:green;color:white;"> 1.084 </td> | OOM | OOM | OOM |
| [BNG(libras_move)](openml.org/t/7327) | 1956 | 4.2 <td style="background-color:green;color:white;"> 2.51 </td> | 1922 | 97.6 | 2.53 |
| [BNG(satellite_image)](openml.org/t/7326) | 334 | 1.6 | 0.731 | 337 | 10.0 <td style="background-color:green;color:white;"> 0.721 </td> |
| [COMET_MC](openml.org/t/14949) | 44 | 1.0 <td style="background-color:green;color:white;"> 0.0615 </td> | 47 | 5.0 | 0.0662 |
| [friedman1](openml.org/t/361939) | 275 | 4.2 <td style="background-color:green;color:white;"> 1.047 </td> | 278 | 5.1 | 1.487 |
| [poker](openml.org/t/10102) | 38 | 0.6 <td style="background-color:green;color:white;"> 0.256 </td> | 41 | 1.2 | 0.722 |
| [subset_higgs](openml.org/t/361955) | 868 | 10.6 <td style="background-color:green;color:white;"> 0.420 </td> | 870 | 24.5 | 0.421 |
| [BNG(autoHorse)](openml.org/t/7319) | 107 | 1.1 <td style="background-color:green;color:white;"> 19.0 </td> | 107 | 3.2 | 20.5 |
| [BNG(pbc)](openml.org/t/7318) | 48 | 0.6 <td style="background-color:green;color:white;"> 836.5 </td> | 51 | 0.2 | 957.1 |
| average | 465 | 3.9 | - | 464 | 19.7 | - |
PerpetualBooster outperformed AutoGluon on 8 out of 10 datasets, training equally fast and inferring 5x faster. The results can be reproduced using the automlbenchmark fork [here](https://github.com/deadsoul44/automlbenchmark).
## Usage
You can use the algorithm like in the example below. Check examples folders for both Rust and Python.
```python
from perpetual import PerpetualBooster
model = PerpetualBooster(objective="SquaredLoss")
model.fit(X, y, budget=1.0)
```
## Documentation
Documentation for the Python API can be found [here](https://perpetual-ml.github.io/perpetual) and for the Rust API [here](https://docs.rs/perpetual/latest/perpetual/).
## Installation
The package can be installed directly from [pypi](https://pypi.org/project/perpetual):
```shell
pip install perpetual
```
Using [conda-forge](https://anaconda.org/conda-forge/perpetual):
```shell
conda install conda-forge::perpetual
```
To use in a Rust project and to get the package from [crates.io](https://crates.io/crates/perpetual):
```shell
cargo add perpetual
```
## Contribution
Contributions are welcome. Check CONTRIBUTING.md for the guideline.
## Paper
PerpetualBooster prevents overfitting with a generalization algorithm. The paper is work-in-progress to explain how the algorithm works. Check our [blog post](https://perpetual-ml.com/blog/how-perpetual-works) for a high level introduction to the algorithm.
Raw data
{
"_id": null,
"home_page": "https://perpetual-ml.com",
"name": "perpetual",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "rust, perpetual, machine learning, tree model, decision tree, gradient boosted decision tree, gradient boosting machine",
"author": "Mutlu Simsek",
"author_email": "Mutlu Simsek <msimsek@perpetual-ml.com>",
"download_url": "https://files.pythonhosted.org/packages/9d/f4/9d8f94e035787d67530ca08dbd8cfa274518be3fad0b95346c3017e8e2d9/perpetual-0.7.10.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img height=\"120\" src=\"https://github.com/perpetual-ml/perpetual/raw/main/resources/perp_logo.png\">\n</p>\n\n<div align=\"center\">\n\n[![Python Versions](https://img.shields.io/pypi/pyversions/perpetual.svg?logo=python&logoColor=white)](https://pypi.org/project/perpetual)\n[![PyPI Version](https://img.shields.io/pypi/v/perpetual.svg?logo=pypi&logoColor=white)](https://pypi.org/project/perpetual)\n[![Crates.io Version](https://img.shields.io/crates/v/perpetual?logo=rust&logoColor=white)](https://crates.io/crates/perpetual)\n[![Static Badge](https://img.shields.io/badge/join-discord-blue?logo=discord)](https://discord.gg/AyUK7rr6wy)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/perpetual)\n\n</div>\n\n# Perpetual\n\nPerpetualBooster is a gradient boosting machine (GBM) algorithm which doesn't need hyperparameter optimization unlike other GBM algorithms. Similar to AutoML libraries, it has a `budget` parameter. Increasing the `budget` parameter increases the predictive power of the algorithm and gives better results on unseen data. Start with a small budget (e.g. 1.0) and increase it (e.g. 2.0) once you are confident with your features. If you don't see any improvement with further increasing the `budget`, it means that you are already extracting the most predictive power out of your data.\n\n## Benchmark\n\nHyperparameter optimization usually takes 100 iterations with plain GBM algorithms. PerpetualBooster achieves the same accuracy in a single run. Thus, it achieves up to 100x speed-up at the same accuracy with different `budget` levels and with different datasets.\n\nThe following table summarizes the results for the [California Housing](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html) dataset (regression):\n\n| Perpetual budget | LightGBM n_estimators | Perpetual mse | LightGBM mse | Speed-up wall time | Speed-up cpu time |\n| ---------------- | --------------------- | ------------- | ------------ | ------------------ | ----------------- |\n| 1.0 | 100 | 0.192 | 0.192 | 54x | 56x |\n| 1.5 | 300 | 0.188 | 0.188 | 59x | 58x |\n| 2.1 | 1000 | 0.185 | 0.186 | 42x | 41x |\n\nThe following table summarizes the results for the [Cover Types](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html) dataset (classification):\n\n| Perpetual budget | LightGBM n_estimators | Perpetual log loss | LightGBM log loss | Speed-up wall time | Speed-up cpu time |\n| ---------------- | --------------------- | ------------------ | ----------------- | ------------------ | ----------------- |\n| 0.9 | 100 | 0.091 | 0.084 | 72x | 78x |\n\nThe results can be reproduced using the scripts in the [examples](./python-package/examples) folder.\n\nPerpetualBooster is a GBM but behaves like AutoML so it is benchmarked also against AutoGluon (v1.2, best quality preset), the current leader in [AutoML benchmark](https://automlbenchmark.streamlit.app/cd_diagram). Top 10 datasets with the most number of rows are selected from [OpenML datasets](https://www.openml.org/). The results are summarized in the following table for regression tasks:\n\n| OpenML Task | Perpetual Training Duration | Perpetual Inference Duration | Perpetual RMSE | AutoGluon Training Duration | AutoGluon Inference Duration | AutoGluon RMSE |\n| -------------------------------------------- | --------------------------- | ----------------------------------------------------------------- | -------------- | --------------------------- | ----------------------------------------------------------------- | -------------- |\n| [Airlines_DepDelay_10M](openml.org/t/359929) | 518 | 11.3 | 29.0 | 520 | 30.9 <td style=\"background-color:green;color:white;\"> 28.8 </td> |\n| [bates_regr_100](openml.org/t/361940) | 3421 | 15.1 <td style=\"background-color:green;color:white;\"> 1.084 </td> | OOM | OOM | OOM |\n| [BNG(libras_move)](openml.org/t/7327) | 1956 | 4.2 <td style=\"background-color:green;color:white;\"> 2.51 </td> | 1922 | 97.6 | 2.53 |\n| [BNG(satellite_image)](openml.org/t/7326) | 334 | 1.6 | 0.731 | 337 | 10.0 <td style=\"background-color:green;color:white;\"> 0.721 </td> |\n| [COMET_MC](openml.org/t/14949) | 44 | 1.0 <td style=\"background-color:green;color:white;\"> 0.0615 </td> | 47 | 5.0 | 0.0662 |\n| [friedman1](openml.org/t/361939) | 275 | 4.2 <td style=\"background-color:green;color:white;\"> 1.047 </td> | 278 | 5.1 | 1.487 |\n| [poker](openml.org/t/10102) | 38 | 0.6 <td style=\"background-color:green;color:white;\"> 0.256 </td> | 41 | 1.2 | 0.722 |\n| [subset_higgs](openml.org/t/361955) | 868 | 10.6 <td style=\"background-color:green;color:white;\"> 0.420 </td> | 870 | 24.5 | 0.421 |\n| [BNG(autoHorse)](openml.org/t/7319) | 107 | 1.1 <td style=\"background-color:green;color:white;\"> 19.0 </td> | 107 | 3.2 | 20.5 |\n| [BNG(pbc)](openml.org/t/7318) | 48 | 0.6 <td style=\"background-color:green;color:white;\"> 836.5 </td> | 51 | 0.2 | 957.1 |\n| average | 465 | 3.9 | - | 464 | 19.7 | - |\n\nPerpetualBooster outperformed AutoGluon on 8 out of 10 datasets, training equally fast and inferring 5x faster. The results can be reproduced using the automlbenchmark fork [here](https://github.com/deadsoul44/automlbenchmark).\n\n## Usage\n\nYou can use the algorithm like in the example below. Check examples folders for both Rust and Python.\n\n```python\nfrom perpetual import PerpetualBooster\n\nmodel = PerpetualBooster(objective=\"SquaredLoss\")\nmodel.fit(X, y, budget=1.0)\n```\n\n## Documentation\n\nDocumentation for the Python API can be found [here](https://perpetual-ml.github.io/perpetual) and for the Rust API [here](https://docs.rs/perpetual/latest/perpetual/).\n\n## Installation\n\nThe package can be installed directly from [pypi](https://pypi.org/project/perpetual):\n\n```shell\npip install perpetual\n```\n\nUsing [conda-forge](https://anaconda.org/conda-forge/perpetual):\n\n```shell\nconda install conda-forge::perpetual\n```\n\nTo use in a Rust project and to get the package from [crates.io](https://crates.io/crates/perpetual):\n\n```shell\ncargo add perpetual\n```\n\n## Contribution\n\nContributions are welcome. Check CONTRIBUTING.md for the guideline.\n\n## Paper\n\nPerpetualBooster prevents overfitting with a generalization algorithm. The paper is work-in-progress to explain how the algorithm works. Check our [blog post](https://perpetual-ml.com/blog/how-perpetual-works) for a high level introduction to the algorithm.\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A self-generalizing gradient boosting machine which doesn't need hyperparameter optimization",
"version": "0.7.10",
"project_urls": {
"Homepage": "https://perpetual-ml.com",
"Source Code": "https://github.com/perpetual-ml/perpetual"
},
"split_keywords": [
"rust",
" perpetual",
" machine learning",
" tree model",
" decision tree",
" gradient boosted decision tree",
" gradient boosting machine"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5cef15487bac34f4017ad73fba217db3107a426899642248826af7e480d8b742",
"md5": "9820ab329ece6c242b92d37d1c849ceb",
"sha256": "6c8123465e56ebecfa4bd1d82d223202866e835dcc930c0b664672dbc7fdf847"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9820ab329ece6c242b92d37d1c849ceb",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 895080,
"upload_time": "2024-12-02T17:12:35",
"upload_time_iso_8601": "2024-12-02T17:12:35.696930Z",
"url": "https://files.pythonhosted.org/packages/5c/ef/15487bac34f4017ad73fba217db3107a426899642248826af7e480d8b742/perpetual-0.7.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8f15fe6fe4b279dfcfd5e104481493f7d8832c041e91007562da919c1df201d5",
"md5": "4a98ed4da63b4cfb5ede075af6aca193",
"sha256": "3b26ca5d72c99c90e4df3d2e965d38e5d88a1fa6488f76d44b5939c59aa5213c"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp310-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "4a98ed4da63b4cfb5ede075af6aca193",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 631802,
"upload_time": "2024-12-02T17:12:38",
"upload_time_iso_8601": "2024-12-02T17:12:38.594446Z",
"url": "https://files.pythonhosted.org/packages/8f/15/fe6fe4b279dfcfd5e104481493f7d8832c041e91007562da919c1df201d5/perpetual-0.7.10-cp310-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c766c7844dc7fb8cd7858160277d73a11ac3cc2db91edcf11e67e2a5173e5416",
"md5": "90bd840bab72f49ec4393d0f3bec2733",
"sha256": "d067797d0cdf53d6fabf467f719df414a7983886e938aa701d70431e3390cd3c"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp311-cp311-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "90bd840bab72f49ec4393d0f3bec2733",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 680381,
"upload_time": "2024-12-02T17:12:40",
"upload_time_iso_8601": "2024-12-02T17:12:40.804378Z",
"url": "https://files.pythonhosted.org/packages/c7/66/c7844dc7fb8cd7858160277d73a11ac3cc2db91edcf11e67e2a5173e5416/perpetual-0.7.10-cp311-cp311-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e03e557c326add616f6cb86e7069672e850aaf93ddb2a32f98f99994d68ea6b1",
"md5": "1e223d9eee76b83cc818f1de87b21a01",
"sha256": "f8ae48764ed5890b5d39500b404863cc86615bfcb858fcb5b593a5f07387853e"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "1e223d9eee76b83cc818f1de87b21a01",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 641158,
"upload_time": "2024-12-02T17:12:42",
"upload_time_iso_8601": "2024-12-02T17:12:42.521133Z",
"url": "https://files.pythonhosted.org/packages/e0/3e/557c326add616f6cb86e7069672e850aaf93ddb2a32f98f99994d68ea6b1/perpetual-0.7.10-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "adee4b41d08052940b08a9fb00bac4243bfd5357aa602c3d7b5f9414fe7669bf",
"md5": "2294b00e0c0e2266b62ca1480231f5ec",
"sha256": "b47c0b11f5b1f2e0e6de7b36dadf3a5a52c3c9a788ecbf10c94cf9ea2259e909"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2294b00e0c0e2266b62ca1480231f5ec",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 894895,
"upload_time": "2024-12-02T17:12:44",
"upload_time_iso_8601": "2024-12-02T17:12:44.480493Z",
"url": "https://files.pythonhosted.org/packages/ad/ee/4b41d08052940b08a9fb00bac4243bfd5357aa602c3d7b5f9414fe7669bf/perpetual-0.7.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ea5480185f852891682a16bfc811bedc2c0658c4621fc9207d903038a1e9f3d9",
"md5": "0ce98b38fedefcb6d2f48a609abf9238",
"sha256": "d3b6087bdafaf6bd3bb16911d59a86e1fd9d0dd97f2d5b8b96ceeab9acb3372d"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp311-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "0ce98b38fedefcb6d2f48a609abf9238",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 631845,
"upload_time": "2024-12-02T17:12:46",
"upload_time_iso_8601": "2024-12-02T17:12:46.641375Z",
"url": "https://files.pythonhosted.org/packages/ea/54/80185f852891682a16bfc811bedc2c0658c4621fc9207d903038a1e9f3d9/perpetual-0.7.10-cp311-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8d04d1a037f338b38c3753dd2cda5f23585dc152e874cf17e4484387db31216c",
"md5": "5384f73552d25995a733a9a3c7afc5f1",
"sha256": "e4090ad6defb82be28f8f649256f5317ae51c4330c2250d00a112f8b6dc32cf8"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp312-cp312-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "5384f73552d25995a733a9a3c7afc5f1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 675236,
"upload_time": "2024-12-02T17:12:48",
"upload_time_iso_8601": "2024-12-02T17:12:48.362120Z",
"url": "https://files.pythonhosted.org/packages/8d/04/d1a037f338b38c3753dd2cda5f23585dc152e874cf17e4484387db31216c/perpetual-0.7.10-cp312-cp312-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a3c8a44088cb3f56815347dc25a6f3729437ba39cf9f00ebd146d179e6b24366",
"md5": "7ddc5fe367358458d9b33aacd0cceba1",
"sha256": "ddb6968260a2bff3db19e0e59616c1958f12f071dc2effe72fed6ea334b3e211"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "7ddc5fe367358458d9b33aacd0cceba1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 636914,
"upload_time": "2024-12-02T17:12:50",
"upload_time_iso_8601": "2024-12-02T17:12:50.821063Z",
"url": "https://files.pythonhosted.org/packages/a3/c8/a44088cb3f56815347dc25a6f3729437ba39cf9f00ebd146d179e6b24366/perpetual-0.7.10-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a4d376e2db56170c9ff2e5fede3231d30db840d2dcedbba0f4415375a78433e3",
"md5": "a877b2b89807817ccb1df7a9c73efc92",
"sha256": "61edc988d5280309774cc3b9bc3967396cdfabda1941961bf67359c1245ab950"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a877b2b89807817ccb1df7a9c73efc92",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 893106,
"upload_time": "2024-12-02T17:12:52",
"upload_time_iso_8601": "2024-12-02T17:12:52.909302Z",
"url": "https://files.pythonhosted.org/packages/a4/d3/76e2db56170c9ff2e5fede3231d30db840d2dcedbba0f4415375a78433e3/perpetual-0.7.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e558e1f30c9dc4a18416c61dc20e77041d1ddddc594351ec6532af569bc09228",
"md5": "52db3705081abda5ad4ae33390ea1a7a",
"sha256": "3a82eb7e34baed4f6ce774a3fee04ff55ea6266ea7cd9115de8fb2dc8837cf9f"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp312-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "52db3705081abda5ad4ae33390ea1a7a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 630996,
"upload_time": "2024-12-02T17:12:55",
"upload_time_iso_8601": "2024-12-02T17:12:55.181209Z",
"url": "https://files.pythonhosted.org/packages/e5/58/e1f30c9dc4a18416c61dc20e77041d1ddddc594351ec6532af569bc09228/perpetual-0.7.10-cp312-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd4a3b700adb4592acffe22e05b6f9a8c3a40f1bace0c77eecae7ef7f63bc13d",
"md5": "eadb6e4f1e63f2f62e689eefe2f38ff0",
"sha256": "a11b5d1aaae411b8bbdaf605a5636f4e1ebcbf00bd08acccc55036ff2f938d07"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "eadb6e4f1e63f2f62e689eefe2f38ff0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 896605,
"upload_time": "2024-12-02T17:12:56",
"upload_time_iso_8601": "2024-12-02T17:12:56.812294Z",
"url": "https://files.pythonhosted.org/packages/cd/4a/3b700adb4592acffe22e05b6f9a8c3a40f1bace0c77eecae7ef7f63bc13d/perpetual-0.7.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f461e1a0de4eebee881c8e286d6dcbfc4c6fc75121fc10765f7834f645453fec",
"md5": "337425a2481c632d1cb28de97a70834a",
"sha256": "dfe2b579558b2046dd121aed73c84b4a13e5e5be4a52c306064a49b1ad186664"
},
"downloads": -1,
"filename": "perpetual-0.7.10-cp39-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "337425a2481c632d1cb28de97a70834a",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 632387,
"upload_time": "2024-12-02T17:12:59",
"upload_time_iso_8601": "2024-12-02T17:12:59.354842Z",
"url": "https://files.pythonhosted.org/packages/f4/61/e1a0de4eebee881c8e286d6dcbfc4c6fc75121fc10765f7834f645453fec/perpetual-0.7.10-cp39-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9df49d8f94e035787d67530ca08dbd8cfa274518be3fad0b95346c3017e8e2d9",
"md5": "125b9beccb66aa2d474b0f3f11ba4496",
"sha256": "7669534477b84bf8b360e79905bc4ce7377a1214a6c583671099839432bc58c0"
},
"downloads": -1,
"filename": "perpetual-0.7.10.tar.gz",
"has_sig": false,
"md5_digest": "125b9beccb66aa2d474b0f3f11ba4496",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 150764,
"upload_time": "2024-12-02T17:13:00",
"upload_time_iso_8601": "2024-12-02T17:13:00.619440Z",
"url": "https://files.pythonhosted.org/packages/9d/f4/9d8f94e035787d67530ca08dbd8cfa274518be3fad0b95346c3017e8e2d9/perpetual-0.7.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-02 17:13:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "perpetual-ml",
"github_project": "perpetual",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "perpetual"
}