petbox-dca


Namepetbox-dca JSON
Version 1.1.1 PyPI version JSON
download
home_pagehttps://github.com/petbox-dev/dca
SummaryDecline Curve Library
upload_time2024-08-09 17:32:05
maintainerNone
docs_urlNone
authorDavid S. Fulford
requires_python>=3.7
licenseMIT
keywords petbox-dca dca decline curve type curve production forecast production data analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            ===================================
Decline Curve Models ``petbox-dca``
===================================

-----------------------------
Petroleum Engineering Toolbox
-----------------------------

.. image:: https://img.shields.io/pypi/v/petbox-dca.svg
    :target: https://pypi.org/project/petbox-dca/
    :alt: PyPi Version

.. image:: https://travis-ci.org/petbox-dev/dca.svg?branch=master
    :target: https://travis-ci.org/github/petbox-dev/dca
    :alt: Build Status

.. image:: https://readthedocs.org/projects/petbox-dca/badge/?version=latest
    :target: https://petbox-dca.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status

.. image:: https://coveralls.io/repos/github/petbox-dev/dca/badge.svg
    :target: https://coveralls.io/github/petbox-dev/dca
    :alt: Coverage Status

.. image:: https://open.vscode.dev/badges/open-in-vscode.svg
    :target: https://open.vscode.dev/petbox-dev/dca
    :alt: Open in Visual Studio Code


Empirical analysis of production data requires implementation of several decline curve models spread over years and multiple SPE publications. Additionally, comprehensive analysis requires graphical analysis among multiple diagnostics plots and their respective plotting functions. While each model's ``q(t)`` (rate) function may be simple, the ``N(t)`` (cumulative volume) may not be. For example, the hyperbolic model has three different forms (hyperbolic, harmonic, exponential), and this is complicated by potentially multiple segments, each of which must be continuous in the rate derivatives. Or, as in the case of the Power-Law Exponential model, the ``N(t)`` function must be numerically evaluated.

This library defines a single interface to each of the implemented decline curve models. Each model has validation checks for parameter values and provides simple-to-use methods for evaluating arrays of ``time`` to obtain the desired function output.

Additionally, we also define an interface to attach a GOR/CGR yield function to any primary phase model. We can then obtain the outputs for the secondary phase as easily as the primary phase.

Analytic functions are implemented wherever possible. When not possible, numerical evaluations are performed using ``scipy.integrate.fixed_quad``. Given that most of the functions of interest that must be numerically evaluated are monotonic, this generally works well.

+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Primary Phase              | `Transient Hyperbolic <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM>`_,                                  |
|                            | `Modified Hyperbolic <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.MH>`_,                                    |
|                            | `Power-Law Exponential <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLE>`_,                                 |
|                            | `Stretched Exponential <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SE>`_,                                  |
|                            | `Duong <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.Duong>`_                                                |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Secondary Phase            | `Power-Law Yield <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLYield>`_                                    |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Water Phase                | `Power-Law Yield <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLYield>`_                                    |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+

The following functions are exposed for use

+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Base Functions             | `rate(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.rate>`_,                                 |
|                            | `cum(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.cum>`_,                                   |
|                            | `D(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.D>`_,                                       |
|                            | `beta(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.beta>`_,                                 |
|                            | `b(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.b>`_,                                       |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Interval Volumes           | `interval_vol(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.interval_vol>`_,                 |
|                            | `monthly_vol(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.monthly_vol>`_,                   |
|                            | `monthly_vol_equiv(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.monthly_vol_equiv>`_,       |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Transient Hyperbolic       | `transient_rate(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_rate>`_,                      |
|                            | `transient_cum(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_cum>`_,                        |
|                            | `transient_D(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_D>`_,                            |
|                            | `transient_beta(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_beta>`_,                      |
|                            | `transient_b(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_b>`_                             |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Primary Phase              | `add_secondary(model) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PrimaryPhase.add_secondary>`_,           |
|                            | `add_water(model) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PrimaryPhase.add_water>`_                    |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Secondary Phase            | `gor(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SecondaryPhase.gor>`_,                                 |
|                            | `cgr(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SecondaryPhase.cgr>`_                                  |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Water Phase                | `wor(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.WaterPhase.wor>`_,                                     |
|                            | `wgr(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.WaterPhase.wgr>`_                                      |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+
| Utility                    | `bourdet(y, x, ...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.bourdet>`_,                                |
|                            | `get_time(...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.get_time>`_,                                    |
|                            | `get_time_monthly_vol(...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.get_time_monthly_vol>`_             |
+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+


Getting Started
===============

Install the library with `pip <https://pip.pypa.io/en/stable/>`_:

.. code-block:: shell

    pip install petbox-dca


A default time array of evenly-logspaced values over 5 log cycles is provided as a convenience.

.. code-block:: python

    >>> from petbox import dca
    >>> t = dca.get_time()
    >>> mh = dca.MH(qi=1000.0, Di=0.8, bi=1.8, Dterm=0.08)
    >>> mh.rate(t)
    array([986.738, 982.789, 977.692, ..., 0.000])


We can also attach secondary phase and water phase models, and evaluate the rate just as easily.

.. code-block:: python

    >>> mh.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))
    >>> mh.secondary.rate(t)
    array([1184.086, 1179.346, 1173.231, ..., 0.000])

    >>> mh.add_water(dca.PLYield(c=2.0, m0=0.0, m=0.1, t0=90.0, min=None, max=10.0))
    >>> mh.water.rate(t)
    array([1.950, 1.935, 1.917, ..., 0.000])


Once instantiated, the same functions and process for attaching a secondary phase work for any model.

.. code-block:: python

    >>> thm = dca.THM(qi=1000.0, Di=0.8, bi=2.0, bf=0.8, telf=30.0, bterm=0.03, tterm=10.0)
    >>> thm.rate(t)
    array([968.681, 959.741, 948.451, ..., 0.000])

    >>> thm.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))
    >>> thm.secondary.rate(t)
    array([1162.417, 1151.690, 1138.141, ..., 0.000])

    >>> ple = dca.PLE(qi=1000.0, Di=0.1, Dinf=0.00001, n=0.5)
    >>> ple.rate(t)
    array([904.828, 892.092, 877.768, ..., 0.000])

    >>> ple.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))
    >>> ple.secondary.rate(t)
    array([1085.794, 1070.510, 1053.322, ..., 0.000])


Applying the above, we can easily evaluate each model against a data set.

.. code-block:: python

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(121)
    >>> ax2 = fig.add_subplot(122)

    >>> ax1.plot(t_data, rate_data, 'o')
    >>> ax2.plot(t_data, cum_data, 'o')

    >>> ax1.plot(t, thm.rate(t))
    >>> ax2.plot(t, thm.cum(t) * cum_data[-1] / thm.cum(t_data[-1]))  # normalization

    >>> ax1.plot(t, ple.rate(t))
    >>> ax2.plot(t, ple.cum(t) * cum_data[-1] / ple.cum(t_data[-1]))  # normalization

    >>> ...

    >>> plt.show()

.. image:: https://github.com/petbox-dev/dca/raw/master/docs/img/model.png
    :alt: model comparison


See the `API documentation <https://petbox-dca.readthedocs.io/en/latest/api.html>`_ for a complete listing, detailed use examples, and model comparison.


Development
===========
``petbox-dca`` is maintained by David S. Fulford (`@dsfulf <https://github.com/dsfulf>`_). Please post an issue or pull request in this repo for any problems or suggestions!


Version History
===============



1.1.0
-----

* Bug Fix
    * Fix bug in sign in ``MultisegmentHyperbolic.secant_from_nominal``

* Other changes
    * Add `mpmath` to handle precision requires of THM transient functions (only required to use the functions)
    * Adjust default degree of THM transient function quadrature integration from 50 to 10 (`scipy` default is 5)
    * Update package versions for docs and builds
    * Address various floating point errors, suppress `numpy` warnings for those which are mostly unavoidable
    * Add test/doc_exapmles.py and update figures (not sure what happened to the old file)
    * Adjust range of values in tests to avoid numerical errors in `numpy` and `scipy` functions... these were near-epsilon impractical values anyway


1.0.8
-----

* New functions
    * Added ``WaterPhase.wgr`` method

* Other changes
    * Adjust yield model rate function to return consistent units if primary phase is oil or gas
    * Update to `numpy v1.20` typing

1.0.7
-----

* Allow disabling of parameter checks by passing an interable of booleans, each indicating a check
    to each model parameter.
* Explicitly handle floating point overflow errors rather than relying on `numpy`.

1.0.6
-----

* New functions
    * Added ``WaterPhase`` class
    * Added ``WaterPhase.wor`` method
    * Added ``PrimaryPhase.add_water`` method

* Other changes
    * A ``yield`` model may inherit both ``SecondaryPhase`` and ``WaterPhase``, with the respective methods removed upon attachment to a ``PrimaryPhase``.

1.0.5
-----

* New functions
    * Bourdet algorithm

* Other changes
    * Update docstrings
    * Add bourdet data derivatives to detailed use examples


1.0.4
-----

* Fix typos in docs


1.0.3
-----

* Add documentation
* Genericize numerical integration
* Various refactoring


0.0.1 - 1.0.2
-------------

* Internal releases

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/petbox-dev/dca",
    "name": "petbox-dca",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "petbox-dca, dca, decline curve, type curve, production forecast, production data analysis",
    "author": "David S. Fulford",
    "author_email": "petbox-dev@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ac/b3/fbcf9525174f4f1e9bbfdf2aabce1b4239672975464c116bacbc4dd72a98/petbox_dca-1.1.1.tar.gz",
    "platform": null,
    "description": "===================================\r\nDecline Curve Models ``petbox-dca``\r\n===================================\r\n\r\n-----------------------------\r\nPetroleum Engineering Toolbox\r\n-----------------------------\r\n\r\n.. image:: https://img.shields.io/pypi/v/petbox-dca.svg\r\n    :target: https://pypi.org/project/petbox-dca/\r\n    :alt: PyPi Version\r\n\r\n.. image:: https://travis-ci.org/petbox-dev/dca.svg?branch=master\r\n    :target: https://travis-ci.org/github/petbox-dev/dca\r\n    :alt: Build Status\r\n\r\n.. image:: https://readthedocs.org/projects/petbox-dca/badge/?version=latest\r\n    :target: https://petbox-dca.readthedocs.io/en/latest/?badge=latest\r\n    :alt: Documentation Status\r\n\r\n.. image:: https://coveralls.io/repos/github/petbox-dev/dca/badge.svg\r\n    :target: https://coveralls.io/github/petbox-dev/dca\r\n    :alt: Coverage Status\r\n\r\n.. image:: https://open.vscode.dev/badges/open-in-vscode.svg\r\n    :target: https://open.vscode.dev/petbox-dev/dca\r\n    :alt: Open in Visual Studio Code\r\n\r\n\r\nEmpirical analysis of production data requires implementation of several decline curve models spread over years and multiple SPE publications. Additionally, comprehensive analysis requires graphical analysis among multiple diagnostics plots and their respective plotting functions. While each model's ``q(t)`` (rate) function may be simple, the ``N(t)`` (cumulative volume) may not be. For example, the hyperbolic model has three different forms (hyperbolic, harmonic, exponential), and this is complicated by potentially multiple segments, each of which must be continuous in the rate derivatives. Or, as in the case of the Power-Law Exponential model, the ``N(t)`` function must be numerically evaluated.\r\n\r\nThis library defines a single interface to each of the implemented decline curve models. Each model has validation checks for parameter values and provides simple-to-use methods for evaluating arrays of ``time`` to obtain the desired function output.\r\n\r\nAdditionally, we also define an interface to attach a GOR/CGR yield function to any primary phase model. We can then obtain the outputs for the secondary phase as easily as the primary phase.\r\n\r\nAnalytic functions are implemented wherever possible. When not possible, numerical evaluations are performed using ``scipy.integrate.fixed_quad``. Given that most of the functions of interest that must be numerically evaluated are monotonic, this generally works well.\r\n\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Primary Phase              | `Transient Hyperbolic <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM>`_,                                  |\r\n|                            | `Modified Hyperbolic <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.MH>`_,                                    |\r\n|                            | `Power-Law Exponential <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLE>`_,                                 |\r\n|                            | `Stretched Exponential <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SE>`_,                                  |\r\n|                            | `Duong <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.Duong>`_                                                |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Secondary Phase            | `Power-Law Yield <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLYield>`_                                    |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Water Phase                | `Power-Law Yield <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PLYield>`_                                    |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n\r\nThe following functions are exposed for use\r\n\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Base Functions             | `rate(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.rate>`_,                                 |\r\n|                            | `cum(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.cum>`_,                                   |\r\n|                            | `D(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.D>`_,                                       |\r\n|                            | `beta(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.beta>`_,                                 |\r\n|                            | `b(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.b>`_,                                       |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Interval Volumes           | `interval_vol(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.interval_vol>`_,                 |\r\n|                            | `monthly_vol(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.monthly_vol>`_,                   |\r\n|                            | `monthly_vol_equiv(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.DeclineCurve.monthly_vol_equiv>`_,       |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Transient Hyperbolic       | `transient_rate(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_rate>`_,                      |\r\n|                            | `transient_cum(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_cum>`_,                        |\r\n|                            | `transient_D(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_D>`_,                            |\r\n|                            | `transient_beta(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_beta>`_,                      |\r\n|                            | `transient_b(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.THM.transient_b>`_                             |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Primary Phase              | `add_secondary(model) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PrimaryPhase.add_secondary>`_,           |\r\n|                            | `add_water(model) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.PrimaryPhase.add_water>`_                    |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Secondary Phase            | `gor(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SecondaryPhase.gor>`_,                                 |\r\n|                            | `cgr(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.SecondaryPhase.cgr>`_                                  |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Water Phase                | `wor(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.WaterPhase.wor>`_,                                     |\r\n|                            | `wgr(t) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.WaterPhase.wgr>`_                                      |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n| Utility                    | `bourdet(y, x, ...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.bourdet>`_,                                |\r\n|                            | `get_time(...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.get_time>`_,                                    |\r\n|                            | `get_time_monthly_vol(...) <https://petbox-dca.readthedocs.io/en/latest/api.html#petbox.dca.get_time_monthly_vol>`_             |\r\n+----------------------------+---------------------------------------------------------------------------------------------------------------------------------+\r\n\r\n\r\nGetting Started\r\n===============\r\n\r\nInstall the library with `pip <https://pip.pypa.io/en/stable/>`_:\r\n\r\n.. code-block:: shell\r\n\r\n    pip install petbox-dca\r\n\r\n\r\nA default time array of evenly-logspaced values over 5 log cycles is provided as a convenience.\r\n\r\n.. code-block:: python\r\n\r\n    >>> from petbox import dca\r\n    >>> t = dca.get_time()\r\n    >>> mh = dca.MH(qi=1000.0, Di=0.8, bi=1.8, Dterm=0.08)\r\n    >>> mh.rate(t)\r\n    array([986.738, 982.789, 977.692, ..., 0.000])\r\n\r\n\r\nWe can also attach secondary phase and water phase models, and evaluate the rate just as easily.\r\n\r\n.. code-block:: python\r\n\r\n    >>> mh.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))\r\n    >>> mh.secondary.rate(t)\r\n    array([1184.086, 1179.346, 1173.231, ..., 0.000])\r\n\r\n    >>> mh.add_water(dca.PLYield(c=2.0, m0=0.0, m=0.1, t0=90.0, min=None, max=10.0))\r\n    >>> mh.water.rate(t)\r\n    array([1.950, 1.935, 1.917, ..., 0.000])\r\n\r\n\r\nOnce instantiated, the same functions and process for attaching a secondary phase work for any model.\r\n\r\n.. code-block:: python\r\n\r\n    >>> thm = dca.THM(qi=1000.0, Di=0.8, bi=2.0, bf=0.8, telf=30.0, bterm=0.03, tterm=10.0)\r\n    >>> thm.rate(t)\r\n    array([968.681, 959.741, 948.451, ..., 0.000])\r\n\r\n    >>> thm.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))\r\n    >>> thm.secondary.rate(t)\r\n    array([1162.417, 1151.690, 1138.141, ..., 0.000])\r\n\r\n    >>> ple = dca.PLE(qi=1000.0, Di=0.1, Dinf=0.00001, n=0.5)\r\n    >>> ple.rate(t)\r\n    array([904.828, 892.092, 877.768, ..., 0.000])\r\n\r\n    >>> ple.add_secondary(dca.PLYield(c=1200.0, m0=0.0, m=0.6, t0=180.0, min=None, max=20_000.0))\r\n    >>> ple.secondary.rate(t)\r\n    array([1085.794, 1070.510, 1053.322, ..., 0.000])\r\n\r\n\r\nApplying the above, we can easily evaluate each model against a data set.\r\n\r\n.. code-block:: python\r\n\r\n    >>> import matplotlib.pyplot as plt\r\n    >>> fig = plt.figure()\r\n    >>> ax1 = fig.add_subplot(121)\r\n    >>> ax2 = fig.add_subplot(122)\r\n\r\n    >>> ax1.plot(t_data, rate_data, 'o')\r\n    >>> ax2.plot(t_data, cum_data, 'o')\r\n\r\n    >>> ax1.plot(t, thm.rate(t))\r\n    >>> ax2.plot(t, thm.cum(t) * cum_data[-1] / thm.cum(t_data[-1]))  # normalization\r\n\r\n    >>> ax1.plot(t, ple.rate(t))\r\n    >>> ax2.plot(t, ple.cum(t) * cum_data[-1] / ple.cum(t_data[-1]))  # normalization\r\n\r\n    >>> ...\r\n\r\n    >>> plt.show()\r\n\r\n.. image:: https://github.com/petbox-dev/dca/raw/master/docs/img/model.png\r\n    :alt: model comparison\r\n\r\n\r\nSee the `API documentation <https://petbox-dca.readthedocs.io/en/latest/api.html>`_ for a complete listing, detailed use examples, and model comparison.\r\n\r\n\r\nDevelopment\r\n===========\r\n``petbox-dca`` is maintained by David S. Fulford (`@dsfulf <https://github.com/dsfulf>`_). Please post an issue or pull request in this repo for any problems or suggestions!\r\n\r\n\r\nVersion History\r\n===============\r\n\r\n\r\n\r\n1.1.0\r\n-----\r\n\r\n* Bug Fix\r\n    * Fix bug in sign in ``MultisegmentHyperbolic.secant_from_nominal``\r\n\r\n* Other changes\r\n    * Add `mpmath` to handle precision requires of THM transient functions (only required to use the functions)\r\n    * Adjust default degree of THM transient function quadrature integration from 50 to 10 (`scipy` default is 5)\r\n    * Update package versions for docs and builds\r\n    * Address various floating point errors, suppress `numpy` warnings for those which are mostly unavoidable\r\n    * Add test/doc_exapmles.py and update figures (not sure what happened to the old file)\r\n    * Adjust range of values in tests to avoid numerical errors in `numpy` and `scipy` functions... these were near-epsilon impractical values anyway\r\n\r\n\r\n1.0.8\r\n-----\r\n\r\n* New functions\r\n    * Added ``WaterPhase.wgr`` method\r\n\r\n* Other changes\r\n    * Adjust yield model rate function to return consistent units if primary phase is oil or gas\r\n    * Update to `numpy v1.20` typing\r\n\r\n1.0.7\r\n-----\r\n\r\n* Allow disabling of parameter checks by passing an interable of booleans, each indicating a check\r\n    to each model parameter.\r\n* Explicitly handle floating point overflow errors rather than relying on `numpy`.\r\n\r\n1.0.6\r\n-----\r\n\r\n* New functions\r\n    * Added ``WaterPhase`` class\r\n    * Added ``WaterPhase.wor`` method\r\n    * Added ``PrimaryPhase.add_water`` method\r\n\r\n* Other changes\r\n    * A ``yield`` model may inherit both ``SecondaryPhase`` and ``WaterPhase``, with the respective methods removed upon attachment to a ``PrimaryPhase``.\r\n\r\n1.0.5\r\n-----\r\n\r\n* New functions\r\n    * Bourdet algorithm\r\n\r\n* Other changes\r\n    * Update docstrings\r\n    * Add bourdet data derivatives to detailed use examples\r\n\r\n\r\n1.0.4\r\n-----\r\n\r\n* Fix typos in docs\r\n\r\n\r\n1.0.3\r\n-----\r\n\r\n* Add documentation\r\n* Genericize numerical integration\r\n* Various refactoring\r\n\r\n\r\n0.0.1 - 1.0.2\r\n-------------\r\n\r\n* Internal releases\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Decline Curve Library",
    "version": "1.1.1",
    "project_urls": {
        "Homepage": "https://github.com/petbox-dev/dca"
    },
    "split_keywords": [
        "petbox-dca",
        " dca",
        " decline curve",
        " type curve",
        " production forecast",
        " production data analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "19967c2ed405e902bf8e3991e2c6b3faebf3ef412435a0361fa2a1f55ac77b80",
                "md5": "ec46ecc5b10ec2e56863233b6a7eede3",
                "sha256": "4f3fedaf5ff89f810bab5672e3ecd07b591bf8d4c205df29379e4fa8591aeea0"
            },
            "downloads": -1,
            "filename": "petbox_dca-1.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ec46ecc5b10ec2e56863233b6a7eede3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 21267,
            "upload_time": "2024-08-09T17:32:03",
            "upload_time_iso_8601": "2024-08-09T17:32:03.821950Z",
            "url": "https://files.pythonhosted.org/packages/19/96/7c2ed405e902bf8e3991e2c6b3faebf3ef412435a0361fa2a1f55ac77b80/petbox_dca-1.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "acb3fbcf9525174f4f1e9bbfdf2aabce1b4239672975464c116bacbc4dd72a98",
                "md5": "607271d64a6720066d5c29e1b7600166",
                "sha256": "e00f2c9ebebab52ea6c563c4d0122f521b3edd224f15ed5cf624ee56860956d1"
            },
            "downloads": -1,
            "filename": "petbox_dca-1.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "607271d64a6720066d5c29e1b7600166",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 845959,
            "upload_time": "2024-08-09T17:32:05",
            "upload_time_iso_8601": "2024-08-09T17:32:05.063612Z",
            "url": "https://files.pythonhosted.org/packages/ac/b3/fbcf9525174f4f1e9bbfdf2aabce1b4239672975464c116bacbc4dd72a98/petbox_dca-1.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-09 17:32:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "petbox-dev",
    "github_project": "dca",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "lcname": "petbox-dca"
}
        
Elapsed time: 0.43084s