petsard


Namepetsard JSON
Version 1.9.0 PyPI version JSON
download
home_pageNone
SummaryFacilitates data generation algorithm and their evaluation processes
upload_time2025-10-19 23:08:51
maintainerNone
docs_urlNone
authormatheme-justyn
requires_python<3.12,>=3.10
licenseNone
keywords petsard data preprocessing data generation data evaluation synthetic data privacy privacy enhancing technologies pets anonymization differential privacy data science machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center"><img width=75% src="https://raw.githubusercontent.com/nics-dp/petsard/main/.github/assets/PETsARD-logo.png"></p>

![Python 3.10](https://img.shields.io/badge/python-v3.10-blue.svg)
![Python 3.11](https://img.shields.io/badge/python-v3.11-blue.svg)
![Contributions welcome](https://img.shields.io/badge/contributions-welcome-orange.svg)
![PyPI - Status](https://img.shields.io/pypi/status/petsard)

`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /pəˈtɑrd/) is a Python library for facilitating data generation algorithm and their evaluation processes.

The main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.

`PETsARD`(隱私強化技術分析、研究與開發)是一套為了促進資料生成演算法及其評估過程而設計的 Python 程式庫。

其主要功能包括描述資料集、執行各種資料集生成算法,以及對隱私保護和效用進行測量。

---

## **✨ Features 主要功能**

- 🔄 **Data Generation 資料生成**: Support for multiple synthetic data generation algorithms including SDV, Faker, and more
  - 支援多種合成資料生成演算法,包括 SDV、Faker 等

- 🔒 **Privacy Evaluation 隱私評估**: Comprehensive privacy risk assessment using anonymeter
  - 使用 anonymeter 進行全面的隱私風險評估

- 📊 **Utility Metrics 效用指標**: Data quality and utility measurements using sdmetrics and custom evaluators
  - 使用 sdmetrics 與自訂評估器進行資料品質與效用測量

- 🎯 **Flexible Configuration 靈活配置**: YAML-based configuration for experiment workflows
  - 基於 YAML 的實驗流程配置

- 📦 **Benchmark Datasets 基準資料集**: Built-in support for loading common benchmark datasets
  - 內建支援載入常見的基準資料集

---

# **📚 Documentation 文件**

## [**🏠 Main Site 主要網站: PETsARD**](https://nics-dp.github.io/petsard/)

Project homepage with overview and foundation information
專案首頁,提供專案概觀與基礎資訊

Website: https://nics-dp.github.io/petsard/

## [**📖 Docs 文件**](https://nics-dp.github.io/petsard/docs/)

The User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.

使用者指南旨在幫助開發者迅速獲得必要的技能,以使用 `PETsARD` 進行資料合成、合成資料的評估,以及提升開發者隱私增強相關領域的研究效率。

### [**📦 Installation 安裝**](https://nics-dp.github.io/petsard/docs/installation/)
- PyPI package installation 從 PyPI 安裝套件
- Docker-based setup Docker 環境建置
- Package pre-download for offline environments 離線環境套件預先下載
- Environment verification 環境檢查

### [**🚀 Getting Started 入門指南**](https://nics-dp.github.io/petsard/docs/getting-started/)
- Default synthesis and evaluation workflow 預設合成與評估流程
- Using external synthetic data 使用外部合成資料

### [**⭐ Best Practices 最佳實踐**](https://nics-dp.github.io/petsard/docs/best-practices/)
- Handling categorical data 處理類別資料
- High-cardinality data techniques 高基數資料技巧
- Multi-table synthesis 多表合成
- Multi-timestamp data handling 多時間戳資料處理

### [**⚙️ YAML Configuration YAML 配置**](https://nics-dp.github.io/petsard/docs/petsard-yaml/)
- Executor: Workflow orchestration and execution 工作流程編排與執行
- Loader: Data loading configuration 資料載入配置
- Splitter: Data splitting strategies 資料分割策略
- Preprocessor: Data preprocessing options 資料前處理選項
- Synthesizer: Synthesis methods and parameters 合成方法與參數
- Postprocessor: Data postprocessing options 資料後處理選項
- Evaluator: Privacy and utility evaluation 隱私與效用評估
- Describer: Data description and comparison 資料描述與比較
- Constrainer: Data constraints and validation 資料約束與驗證
- Reporter: Result reporting options 結果報告選項

### [**🐍 Python API 文件**](https://nics-dp.github.io/petsard/docs/python-api/)
Detailed API reference for programmatic usage of PETsARD components

PETsARD 元件程式化使用的詳細 API 參考文件

### [**👨‍💻 Developer Guide 開發者指南**](https://nics-dp.github.io/petsard/docs/developer-guide/)
- Development guidelines 開發指南
- Docker development environment Docker 開發環境
- Test coverage 測試覆蓋率
- Benchmark datasets 基準資料集

### [**📚 Glossary 詞彙表**](https://nics-dp.github.io/petsard/docs/glossary/)
- Key terminology and concepts 關鍵術語與概念
- Technical definitions 技術定義

## [**ℹ️ About 關於**](https://nics-dp.github.io/petsard/about/)

- Project background and license information 專案背景與授權資訊
- Academic citations and related literature 學術引用與相關文獻

---

## **🛠️ Development 開發**

### Requirements 需求

- Python 3.10 or 3.11 (Python 3.12 is not yet supported)
- Python 3.10 或 3.11(尚未支援 Python 3.12)

### Repository Structure 專案結構

```
petsard/
├── petsard/          # Main package source code 主要套件原始碼
├── tests/            # Unit tests 單元測試
├── demo/             # Demo files and examples 展示檔案與範例
├── doc_site/         # Documentation website 文件網站
├── pyproject.toml    # Project configuration 專案配置
├── compose.yml       # Docker Compose configuration Docker Compose 配置
└── README.md         # This file 本檔案
```

### Running Tests 執行測試

```bash
# Install with development dependencies 安裝開發依賴
pip install petsard[dev]

# Run all tests 執行所有測試
pytest

# Run tests with coverage 執行測試並生成覆蓋率報告
pytest --cov=petsard --cov-report=html
```

### Building Documentation 建構文件

The documentation site is built using Hugo. To run it locally:

文件網站使用 Hugo 建構。本地執行方式:

```bash
cd doc_site
hugo server
```

---

## **🤝 Contributing 貢獻**

Contributions are welcome! Please feel free to submit a Pull Request.

歡迎貢獻!請隨時提交 Pull Request。

For major changes, please open an issue first to discuss what you would like to change.

對於重大更改,請先開啟 issue 討論您想要更改的內容。

---

## **🔒 Security 安全**

For security vulnerabilities, please refer to our [Security Policy](SECURITY.md).

如有安全漏洞,請參閱我們的[安全政策](SECURITY.md)。

---

## **📄 License 授權**

This project is licensed under the terms specified in the [LICENSE](LICENSE) file.

本專案依據 [LICENSE](LICENSE) 檔案中指定的條款授權。

---

## **🔗 Links 連結**

- **GitHub Repository 程式碼倉庫**: https://github.com/nics-dp/petsard
- **Documentation 文件**: https://nics-dp.github.io/petsard/
- **PyPI Package PyPI 套件**: https://pypi.org/project/petsard/
- **Test PyPI Package 測試 PyPI 套件**: https://test.pypi.org/project/petsard/
- **Issue Tracker 問題追蹤**: https://github.com/nics-dp/petsard/issues

---

## **📧 Contact 聯絡**

For questions or support, please:
- Open an issue on GitHub 在 GitHub 開啟 issue
- Check the documentation 查看文件
- Visit the project website 造訪專案網站

如有問題或需要支援,請:
- 在 GitHub 開啟 issue
- 查看文件
- 造訪專案網站
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "petsard",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.10",
    "maintainer_email": null,
    "keywords": "petsard, data preprocessing, data generation, data evaluation, synthetic data, privacy, privacy enhancing technologies, PETS, anonymization, differential privacy, data science, machine learning",
    "author": "matheme-justyn",
    "author_email": "matheme-justyn <matheme.justyn@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ac/7b/d179f73369a2e2c6fe9620f38ecea46837072aaff7c4fc82a7c5c6253949/petsard-1.9.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img width=75% src=\"https://raw.githubusercontent.com/nics-dp/petsard/main/.github/assets/PETsARD-logo.png\"></p>\n\n![Python 3.10](https://img.shields.io/badge/python-v3.10-blue.svg)\n![Python 3.11](https://img.shields.io/badge/python-v3.11-blue.svg)\n![Contributions welcome](https://img.shields.io/badge/contributions-welcome-orange.svg)\n![PyPI - Status](https://img.shields.io/pypi/status/petsard)\n\n`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /p\u0259\u02c8t\u0251rd/) is a Python library for facilitating data generation algorithm and their evaluation processes.\n\nThe main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.\n\n`PETsARD`\uff08\u96b1\u79c1\u5f37\u5316\u6280\u8853\u5206\u6790\u3001\u7814\u7a76\u8207\u958b\u767c\uff09\u662f\u4e00\u5957\u70ba\u4e86\u4fc3\u9032\u8cc7\u6599\u751f\u6210\u6f14\u7b97\u6cd5\u53ca\u5176\u8a55\u4f30\u904e\u7a0b\u800c\u8a2d\u8a08\u7684 Python \u7a0b\u5f0f\u5eab\u3002\n\n\u5176\u4e3b\u8981\u529f\u80fd\u5305\u62ec\u63cf\u8ff0\u8cc7\u6599\u96c6\u3001\u57f7\u884c\u5404\u7a2e\u8cc7\u6599\u96c6\u751f\u6210\u7b97\u6cd5\uff0c\u4ee5\u53ca\u5c0d\u96b1\u79c1\u4fdd\u8b77\u548c\u6548\u7528\u9032\u884c\u6e2c\u91cf\u3002\n\n---\n\n## **\u2728 Features \u4e3b\u8981\u529f\u80fd**\n\n- \ud83d\udd04 **Data Generation \u8cc7\u6599\u751f\u6210**: Support for multiple synthetic data generation algorithms including SDV, Faker, and more\n  - \u652f\u63f4\u591a\u7a2e\u5408\u6210\u8cc7\u6599\u751f\u6210\u6f14\u7b97\u6cd5\uff0c\u5305\u62ec SDV\u3001Faker \u7b49\n\n- \ud83d\udd12 **Privacy Evaluation \u96b1\u79c1\u8a55\u4f30**: Comprehensive privacy risk assessment using anonymeter\n  - \u4f7f\u7528 anonymeter \u9032\u884c\u5168\u9762\u7684\u96b1\u79c1\u98a8\u96aa\u8a55\u4f30\n\n- \ud83d\udcca **Utility Metrics \u6548\u7528\u6307\u6a19**: Data quality and utility measurements using sdmetrics and custom evaluators\n  - \u4f7f\u7528 sdmetrics \u8207\u81ea\u8a02\u8a55\u4f30\u5668\u9032\u884c\u8cc7\u6599\u54c1\u8cea\u8207\u6548\u7528\u6e2c\u91cf\n\n- \ud83c\udfaf **Flexible Configuration \u9748\u6d3b\u914d\u7f6e**: YAML-based configuration for experiment workflows\n  - \u57fa\u65bc YAML \u7684\u5be6\u9a57\u6d41\u7a0b\u914d\u7f6e\n\n- \ud83d\udce6 **Benchmark Datasets \u57fa\u6e96\u8cc7\u6599\u96c6**: Built-in support for loading common benchmark datasets\n  - \u5167\u5efa\u652f\u63f4\u8f09\u5165\u5e38\u898b\u7684\u57fa\u6e96\u8cc7\u6599\u96c6\n\n---\n\n# **\ud83d\udcda Documentation \u6587\u4ef6**\n\n## [**\ud83c\udfe0 Main Site \u4e3b\u8981\u7db2\u7ad9: PETsARD**](https://nics-dp.github.io/petsard/)\n\nProject homepage with overview and foundation information\n\u5c08\u6848\u9996\u9801\uff0c\u63d0\u4f9b\u5c08\u6848\u6982\u89c0\u8207\u57fa\u790e\u8cc7\u8a0a\n\nWebsite: https://nics-dp.github.io/petsard/\n\n## [**\ud83d\udcd6 Docs \u6587\u4ef6**](https://nics-dp.github.io/petsard/docs/)\n\nThe User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.\n\n\u4f7f\u7528\u8005\u6307\u5357\u65e8\u5728\u5e6b\u52a9\u958b\u767c\u8005\u8fc5\u901f\u7372\u5f97\u5fc5\u8981\u7684\u6280\u80fd\uff0c\u4ee5\u4f7f\u7528 `PETsARD` \u9032\u884c\u8cc7\u6599\u5408\u6210\u3001\u5408\u6210\u8cc7\u6599\u7684\u8a55\u4f30\uff0c\u4ee5\u53ca\u63d0\u5347\u958b\u767c\u8005\u96b1\u79c1\u589e\u5f37\u76f8\u95dc\u9818\u57df\u7684\u7814\u7a76\u6548\u7387\u3002\n\n### [**\ud83d\udce6 Installation \u5b89\u88dd**](https://nics-dp.github.io/petsard/docs/installation/)\n- PyPI package installation \u5f9e PyPI \u5b89\u88dd\u5957\u4ef6\n- Docker-based setup Docker \u74b0\u5883\u5efa\u7f6e\n- Package pre-download for offline environments \u96e2\u7dda\u74b0\u5883\u5957\u4ef6\u9810\u5148\u4e0b\u8f09\n- Environment verification \u74b0\u5883\u6aa2\u67e5\n\n### [**\ud83d\ude80 Getting Started \u5165\u9580\u6307\u5357**](https://nics-dp.github.io/petsard/docs/getting-started/)\n- Default synthesis and evaluation workflow \u9810\u8a2d\u5408\u6210\u8207\u8a55\u4f30\u6d41\u7a0b\n- Using external synthetic data \u4f7f\u7528\u5916\u90e8\u5408\u6210\u8cc7\u6599\n\n### [**\u2b50 Best Practices \u6700\u4f73\u5be6\u8e10**](https://nics-dp.github.io/petsard/docs/best-practices/)\n- Handling categorical data \u8655\u7406\u985e\u5225\u8cc7\u6599\n- High-cardinality data techniques \u9ad8\u57fa\u6578\u8cc7\u6599\u6280\u5de7\n- Multi-table synthesis \u591a\u8868\u5408\u6210\n- Multi-timestamp data handling \u591a\u6642\u9593\u6233\u8cc7\u6599\u8655\u7406\n\n### [**\u2699\ufe0f YAML Configuration YAML \u914d\u7f6e**](https://nics-dp.github.io/petsard/docs/petsard-yaml/)\n- Executor: Workflow orchestration and execution \u5de5\u4f5c\u6d41\u7a0b\u7de8\u6392\u8207\u57f7\u884c\n- Loader: Data loading configuration \u8cc7\u6599\u8f09\u5165\u914d\u7f6e\n- Splitter: Data splitting strategies \u8cc7\u6599\u5206\u5272\u7b56\u7565\n- Preprocessor: Data preprocessing options \u8cc7\u6599\u524d\u8655\u7406\u9078\u9805\n- Synthesizer: Synthesis methods and parameters \u5408\u6210\u65b9\u6cd5\u8207\u53c3\u6578\n- Postprocessor: Data postprocessing options \u8cc7\u6599\u5f8c\u8655\u7406\u9078\u9805\n- Evaluator: Privacy and utility evaluation \u96b1\u79c1\u8207\u6548\u7528\u8a55\u4f30\n- Describer: Data description and comparison \u8cc7\u6599\u63cf\u8ff0\u8207\u6bd4\u8f03\n- Constrainer: Data constraints and validation \u8cc7\u6599\u7d04\u675f\u8207\u9a57\u8b49\n- Reporter: Result reporting options \u7d50\u679c\u5831\u544a\u9078\u9805\n\n### [**\ud83d\udc0d Python API \u6587\u4ef6**](https://nics-dp.github.io/petsard/docs/python-api/)\nDetailed API reference for programmatic usage of PETsARD components\n\nPETsARD \u5143\u4ef6\u7a0b\u5f0f\u5316\u4f7f\u7528\u7684\u8a73\u7d30 API \u53c3\u8003\u6587\u4ef6\n\n### [**\ud83d\udc68\u200d\ud83d\udcbb Developer Guide \u958b\u767c\u8005\u6307\u5357**](https://nics-dp.github.io/petsard/docs/developer-guide/)\n- Development guidelines \u958b\u767c\u6307\u5357\n- Docker development environment Docker \u958b\u767c\u74b0\u5883\n- Test coverage \u6e2c\u8a66\u8986\u84cb\u7387\n- Benchmark datasets \u57fa\u6e96\u8cc7\u6599\u96c6\n\n### [**\ud83d\udcda Glossary \u8a5e\u5f59\u8868**](https://nics-dp.github.io/petsard/docs/glossary/)\n- Key terminology and concepts \u95dc\u9375\u8853\u8a9e\u8207\u6982\u5ff5\n- Technical definitions \u6280\u8853\u5b9a\u7fa9\n\n## [**\u2139\ufe0f About \u95dc\u65bc**](https://nics-dp.github.io/petsard/about/)\n\n- Project background and license information \u5c08\u6848\u80cc\u666f\u8207\u6388\u6b0a\u8cc7\u8a0a\n- Academic citations and related literature \u5b78\u8853\u5f15\u7528\u8207\u76f8\u95dc\u6587\u737b\n\n---\n\n## **\ud83d\udee0\ufe0f Development \u958b\u767c**\n\n### Requirements \u9700\u6c42\n\n- Python 3.10 or 3.11 (Python 3.12 is not yet supported)\n- Python 3.10 \u6216 3.11\uff08\u5c1a\u672a\u652f\u63f4 Python 3.12\uff09\n\n### Repository Structure \u5c08\u6848\u7d50\u69cb\n\n```\npetsard/\n\u251c\u2500\u2500 petsard/          # Main package source code \u4e3b\u8981\u5957\u4ef6\u539f\u59cb\u78bc\n\u251c\u2500\u2500 tests/            # Unit tests \u55ae\u5143\u6e2c\u8a66\n\u251c\u2500\u2500 demo/             # Demo files and examples \u5c55\u793a\u6a94\u6848\u8207\u7bc4\u4f8b\n\u251c\u2500\u2500 doc_site/         # Documentation website \u6587\u4ef6\u7db2\u7ad9\n\u251c\u2500\u2500 pyproject.toml    # Project configuration \u5c08\u6848\u914d\u7f6e\n\u251c\u2500\u2500 compose.yml       # Docker Compose configuration Docker Compose \u914d\u7f6e\n\u2514\u2500\u2500 README.md         # This file \u672c\u6a94\u6848\n```\n\n### Running Tests \u57f7\u884c\u6e2c\u8a66\n\n```bash\n# Install with development dependencies \u5b89\u88dd\u958b\u767c\u4f9d\u8cf4\npip install petsard[dev]\n\n# Run all tests \u57f7\u884c\u6240\u6709\u6e2c\u8a66\npytest\n\n# Run tests with coverage \u57f7\u884c\u6e2c\u8a66\u4e26\u751f\u6210\u8986\u84cb\u7387\u5831\u544a\npytest --cov=petsard --cov-report=html\n```\n\n### Building Documentation \u5efa\u69cb\u6587\u4ef6\n\nThe documentation site is built using Hugo. To run it locally:\n\n\u6587\u4ef6\u7db2\u7ad9\u4f7f\u7528 Hugo \u5efa\u69cb\u3002\u672c\u5730\u57f7\u884c\u65b9\u5f0f\uff1a\n\n```bash\ncd doc_site\nhugo server\n```\n\n---\n\n## **\ud83e\udd1d Contributing \u8ca2\u737b**\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n\u6b61\u8fce\u8ca2\u737b\uff01\u8acb\u96a8\u6642\u63d0\u4ea4 Pull Request\u3002\n\nFor major changes, please open an issue first to discuss what you would like to change.\n\n\u5c0d\u65bc\u91cd\u5927\u66f4\u6539\uff0c\u8acb\u5148\u958b\u555f issue \u8a0e\u8ad6\u60a8\u60f3\u8981\u66f4\u6539\u7684\u5167\u5bb9\u3002\n\n---\n\n## **\ud83d\udd12 Security \u5b89\u5168**\n\nFor security vulnerabilities, please refer to our [Security Policy](SECURITY.md).\n\n\u5982\u6709\u5b89\u5168\u6f0f\u6d1e\uff0c\u8acb\u53c3\u95b1\u6211\u5011\u7684[\u5b89\u5168\u653f\u7b56](SECURITY.md)\u3002\n\n---\n\n## **\ud83d\udcc4 License \u6388\u6b0a**\n\nThis project is licensed under the terms specified in the [LICENSE](LICENSE) file.\n\n\u672c\u5c08\u6848\u4f9d\u64da [LICENSE](LICENSE) \u6a94\u6848\u4e2d\u6307\u5b9a\u7684\u689d\u6b3e\u6388\u6b0a\u3002\n\n---\n\n## **\ud83d\udd17 Links \u9023\u7d50**\n\n- **GitHub Repository \u7a0b\u5f0f\u78bc\u5009\u5eab**: https://github.com/nics-dp/petsard\n- **Documentation \u6587\u4ef6**: https://nics-dp.github.io/petsard/\n- **PyPI Package PyPI \u5957\u4ef6**: https://pypi.org/project/petsard/\n- **Test PyPI Package \u6e2c\u8a66 PyPI \u5957\u4ef6**: https://test.pypi.org/project/petsard/\n- **Issue Tracker \u554f\u984c\u8ffd\u8e64**: https://github.com/nics-dp/petsard/issues\n\n---\n\n## **\ud83d\udce7 Contact \u806f\u7d61**\n\nFor questions or support, please:\n- Open an issue on GitHub \u5728 GitHub \u958b\u555f issue\n- Check the documentation \u67e5\u770b\u6587\u4ef6\n- Visit the project website \u9020\u8a2a\u5c08\u6848\u7db2\u7ad9\n\n\u5982\u6709\u554f\u984c\u6216\u9700\u8981\u652f\u63f4\uff0c\u8acb\uff1a\n- \u5728 GitHub \u958b\u555f issue\n- \u67e5\u770b\u6587\u4ef6\n- \u9020\u8a2a\u5c08\u6848\u7db2\u7ad9",
    "bugtrack_url": null,
    "license": null,
    "summary": "Facilitates data generation algorithm and their evaluation processes",
    "version": "1.9.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/nics-tw/petsard/issues",
        "Documentation": "https://nics-tw.github.io/petsard/",
        "Repository": "https://github.com/nics-tw/petsard"
    },
    "split_keywords": [
        "petsard",
        " data preprocessing",
        " data generation",
        " data evaluation",
        " synthetic data",
        " privacy",
        " privacy enhancing technologies",
        " pets",
        " anonymization",
        " differential privacy",
        " data science",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bf97207eab37cfa8779024fbb947ea8ccdee8eb1779ddd80d18b588e575cdf5a",
                "md5": "1e8f988c33a6b3a0eb07988aa0df6025",
                "sha256": "cd50029f7e8221a24d7f5dc7b555e234cb9c6f71a2a65c094c55062e61f19742"
            },
            "downloads": -1,
            "filename": "petsard-1.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1e8f988c33a6b3a0eb07988aa0df6025",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.10",
            "size": 242005,
            "upload_time": "2025-10-19T23:08:49",
            "upload_time_iso_8601": "2025-10-19T23:08:49.402291Z",
            "url": "https://files.pythonhosted.org/packages/bf/97/207eab37cfa8779024fbb947ea8ccdee8eb1779ddd80d18b588e575cdf5a/petsard-1.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ac7bd179f73369a2e2c6fe9620f38ecea46837072aaff7c4fc82a7c5c6253949",
                "md5": "6cecc926cb7b54687a99fd5bb33028a5",
                "sha256": "bbcbd2bdd19a12ee029b48bc887f557eacbfb40790f3f9d50492c5682b21a707"
            },
            "downloads": -1,
            "filename": "petsard-1.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6cecc926cb7b54687a99fd5bb33028a5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.10",
            "size": 210729,
            "upload_time": "2025-10-19T23:08:51",
            "upload_time_iso_8601": "2025-10-19T23:08:51.243668Z",
            "url": "https://files.pythonhosted.org/packages/ac/7b/d179f73369a2e2c6fe9620f38ecea46837072aaff7c4fc82a7c5c6253949/petsard-1.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-19 23:08:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nics-tw",
    "github_project": "petsard",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "petsard"
}
        
Elapsed time: 0.84449s