<p align="center"><img width=75% src="https://github.com/nics-tw/petsard/blob/main/.github/assets/PETsARD-logo.png"></p>




`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /pəˈtɑrd/) is a Python library for facilitating data generation algorithm and their evaluation processes.
The main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.
`PETsARD`(隱私強化技術分析、研究與開發)是一套為了促進資料生成演算法及其評估過程而設計的 Python 程式庫。
其主要功能包括描述資料集、執行各種資料集生成算法,以及對隱私保護和效用進行測量。
# **📚 Documentation 文件**
## [**🏠 Main Site 主要網站: PETsARD**](https://nics-tw.github.io/petsard/)
- Project homepage with overview and foundation information
- 專案首頁,提供專案概觀與基礎資訊
## [**📖 Docs 文件**](https://nics-tw.github.io/petsard/docs/)
- The User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.
- 使用者指南旨在幫助開發者迅速獲得必要的技能,以使用 `PETsARD` 進行資料合成、合成資料的評估,以及提升開發者隱私增強相關領域的研究效率。
### [**🚀 Get Started 入門指南**](https://nics-tw.github.io/petsard/docs/get-started/)
- Quick installation guide and basic usage examples
- Complete framework structure and configuration details
- 快速安裝指引與基本使用範例
- 完整框架結構與設定說明
### [**📝 Tutorial 教學**](https://nics-tw.github.io/petsard/docs/tutorial/)
- Practical examples from basic to advanced usage
- Guidance and Colab demo for common use cases
- 從基礎到進階的實作範例
- 提供常見使用情境的說明與 Colab 展示
#### [**⚙️ YAML Configuration YAML 設定**](https://nics-tw.github.io/petsard/docs/tutorial/yaml-config)
- Comprehensive configuration writing guide
- Experiment workflow and parameter settings
- 完整的設定檔撰寫指南
- 實驗流程與參數設定詳解
### [**🔬 API Documentation API 文件**](https://nics-tw.github.io/petsard/docs/api/)
- Detailed technical documentation for modules and components
- Covers configuration, execution, pipeline components, and data management
- 模組與元件的詳細技術文件
- 涵蓋設定、執行、管線組件與資料管理
## [**ℹ️ About 關於**](https://nics-tw.github.io/petsard/about/)
- Project background and license information
- Academic citations and related literature
- 專案背景與授權資訊
- 學術引用與相關文獻
Raw data
{
"_id": null,
"home_page": null,
"name": "petsard",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.10",
"maintainer_email": null,
"keywords": "PET, anonymization, data evaluation, data generation, data preprocessing, data science, differential privacy, machine learning, petsard, privacy, privacy enhancing technologies, synthetic data",
"author": null,
"author_email": "matheme-justyn <matheme.justyn@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/35/0e/3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72/petsard-1.5.1.tar.gz",
"platform": null,
"description": "<p align=\"center\"><img width=75% src=\"https://github.com/nics-tw/petsard/blob/main/.github/assets/PETsARD-logo.png\"></p>\n\n\n\n\n\n\n`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /p\u0259\u02c8t\u0251rd/) is a Python library for facilitating data generation algorithm and their evaluation processes.\n\nThe main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.\n\n`PETsARD`\uff08\u96b1\u79c1\u5f37\u5316\u6280\u8853\u5206\u6790\u3001\u7814\u7a76\u8207\u958b\u767c\uff09\u662f\u4e00\u5957\u70ba\u4e86\u4fc3\u9032\u8cc7\u6599\u751f\u6210\u6f14\u7b97\u6cd5\u53ca\u5176\u8a55\u4f30\u904e\u7a0b\u800c\u8a2d\u8a08\u7684 Python \u7a0b\u5f0f\u5eab\u3002\n\n\u5176\u4e3b\u8981\u529f\u80fd\u5305\u62ec\u63cf\u8ff0\u8cc7\u6599\u96c6\u3001\u57f7\u884c\u5404\u7a2e\u8cc7\u6599\u96c6\u751f\u6210\u7b97\u6cd5\uff0c\u4ee5\u53ca\u5c0d\u96b1\u79c1\u4fdd\u8b77\u548c\u6548\u7528\u9032\u884c\u6e2c\u91cf\u3002\n\n# **\ud83d\udcda Documentation \u6587\u4ef6**\n\n## [**\ud83c\udfe0 Main Site \u4e3b\u8981\u7db2\u7ad9: PETsARD**](https://nics-tw.github.io/petsard/)\n\n- Project homepage with overview and foundation information\n- \u5c08\u6848\u9996\u9801\uff0c\u63d0\u4f9b\u5c08\u6848\u6982\u89c0\u8207\u57fa\u790e\u8cc7\u8a0a\n\n## [**\ud83d\udcd6 Docs \u6587\u4ef6**](https://nics-tw.github.io/petsard/docs/)\n\n- The User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.\n- \u4f7f\u7528\u8005\u6307\u5357\u65e8\u5728\u5e6b\u52a9\u958b\u767c\u8005\u8fc5\u901f\u7372\u5f97\u5fc5\u8981\u7684\u6280\u80fd\uff0c\u4ee5\u4f7f\u7528 `PETsARD` \u9032\u884c\u8cc7\u6599\u5408\u6210\u3001\u5408\u6210\u8cc7\u6599\u7684\u8a55\u4f30\uff0c\u4ee5\u53ca\u63d0\u5347\u958b\u767c\u8005\u96b1\u79c1\u589e\u5f37\u76f8\u95dc\u9818\u57df\u7684\u7814\u7a76\u6548\u7387\u3002\n\n\n ### [**\ud83d\ude80 Get Started \u5165\u9580\u6307\u5357**](https://nics-tw.github.io/petsard/docs/get-started/)\n - Quick installation guide and basic usage examples\n - Complete framework structure and configuration details\n - \u5feb\u901f\u5b89\u88dd\u6307\u5f15\u8207\u57fa\u672c\u4f7f\u7528\u7bc4\u4f8b\n - \u5b8c\u6574\u6846\u67b6\u7d50\u69cb\u8207\u8a2d\u5b9a\u8aaa\u660e\n\n ### [**\ud83d\udcdd Tutorial \u6559\u5b78**](https://nics-tw.github.io/petsard/docs/tutorial/)\n\n - Practical examples from basic to advanced usage\n - Guidance and Colab demo for common use cases\n - \u5f9e\u57fa\u790e\u5230\u9032\u968e\u7684\u5be6\u4f5c\u7bc4\u4f8b\n - \u63d0\u4f9b\u5e38\u898b\u4f7f\u7528\u60c5\u5883\u7684\u8aaa\u660e\u8207 Colab \u5c55\u793a\n\n #### [**\u2699\ufe0f YAML Configuration YAML \u8a2d\u5b9a**](https://nics-tw.github.io/petsard/docs/tutorial/yaml-config)\n\n - Comprehensive configuration writing guide\n - Experiment workflow and parameter settings\n - \u5b8c\u6574\u7684\u8a2d\u5b9a\u6a94\u64b0\u5beb\u6307\u5357\n - \u5be6\u9a57\u6d41\u7a0b\u8207\u53c3\u6578\u8a2d\u5b9a\u8a73\u89e3\n\n ### [**\ud83d\udd2c API Documentation API \u6587\u4ef6**](https://nics-tw.github.io/petsard/docs/api/)\n\n - Detailed technical documentation for modules and components\n - Covers configuration, execution, pipeline components, and data management\n - \u6a21\u7d44\u8207\u5143\u4ef6\u7684\u8a73\u7d30\u6280\u8853\u6587\u4ef6\n - \u6db5\u84cb\u8a2d\u5b9a\u3001\u57f7\u884c\u3001\u7ba1\u7dda\u7d44\u4ef6\u8207\u8cc7\u6599\u7ba1\u7406\n\n## [**\u2139\ufe0f About \u95dc\u65bc**](https://nics-tw.github.io/petsard/about/)\n\n- Project background and license information\n- Academic citations and related literature\n- \u5c08\u6848\u80cc\u666f\u8207\u6388\u6b0a\u8cc7\u8a0a\n- \u5b78\u8853\u5f15\u7528\u8207\u76f8\u95dc\u6587\u737b",
"bugtrack_url": null,
"license": null,
"summary": "Facilitates data generation algorithm and their evaluation processes",
"version": "1.5.1",
"project_urls": {
"Bug Tracker": "https://github.com/nics-tw/petsard/issues",
"Documentation": "https://nics-tw.github.io/petsard/",
"Repository": "https://github.com/nics-tw/petsard"
},
"split_keywords": [
"pet",
" anonymization",
" data evaluation",
" data generation",
" data preprocessing",
" data science",
" differential privacy",
" machine learning",
" petsard",
" privacy",
" privacy enhancing technologies",
" synthetic data"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "dbcf69abc1447c18caed5da996d47cd63c38b9e934b7cdb51d513a435850193e",
"md5": "53a318728d0257fb022a4f26254594c8",
"sha256": "ab453fa3c75d53f847ce4d0734f8e6795eb9c6daa6f5f4d88b9aa96bbfeb56ff"
},
"downloads": -1,
"filename": "petsard-1.5.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "53a318728d0257fb022a4f26254594c8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.10",
"size": 237954,
"upload_time": "2025-07-24T06:30:40",
"upload_time_iso_8601": "2025-07-24T06:30:40.505372Z",
"url": "https://files.pythonhosted.org/packages/db/cf/69abc1447c18caed5da996d47cd63c38b9e934b7cdb51d513a435850193e/petsard-1.5.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "350e3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72",
"md5": "3e111cee20edaa3dcb1c0a9ce406f9a1",
"sha256": "39e11ee38d803abee64891b1782ceb75d18c34cd6d9804b56551f4e0fa7728f5"
},
"downloads": -1,
"filename": "petsard-1.5.1.tar.gz",
"has_sig": false,
"md5_digest": "3e111cee20edaa3dcb1c0a9ce406f9a1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.10",
"size": 1615121,
"upload_time": "2025-07-24T06:30:41",
"upload_time_iso_8601": "2025-07-24T06:30:41.890029Z",
"url": "https://files.pythonhosted.org/packages/35/0e/3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72/petsard-1.5.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-24 06:30:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nics-tw",
"github_project": "petsard",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "petsard"
}