petsard


Namepetsard JSON
Version 1.5.1 PyPI version JSON
download
home_pageNone
SummaryFacilitates data generation algorithm and their evaluation processes
upload_time2025-07-24 06:30:41
maintainerNone
docs_urlNone
authorNone
requires_python<3.12,>=3.10
licenseNone
keywords pet anonymization data evaluation data generation data preprocessing data science differential privacy machine learning petsard privacy privacy enhancing technologies synthetic data
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center"><img width=75% src="https://github.com/nics-tw/petsard/blob/main/.github/assets/PETsARD-logo.png"></p>

![Python 3.10](https://img.shields.io/badge/python-v3.10-blue.svg)
![Python 3.11](https://img.shields.io/badge/python-v3.11-blue.svg)
![Contributions welcome](https://img.shields.io/badge/contributions-welcome-orange.svg)
![PyPI - Status](https://img.shields.io/pypi/status/petsard)

`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /pəˈtɑrd/) is a Python library for facilitating data generation algorithm and their evaluation processes.

The main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.

`PETsARD`(隱私強化技術分析、研究與開發)是一套為了促進資料生成演算法及其評估過程而設計的 Python 程式庫。

其主要功能包括描述資料集、執行各種資料集生成算法,以及對隱私保護和效用進行測量。

# **📚 Documentation 文件**

## [**🏠 Main Site 主要網站: PETsARD**](https://nics-tw.github.io/petsard/)

- Project homepage with overview and foundation information
- 專案首頁,提供專案概觀與基礎資訊

## [**📖 Docs 文件**](https://nics-tw.github.io/petsard/docs/)

- The User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.
- 使用者指南旨在幫助開發者迅速獲得必要的技能,以使用 `PETsARD` 進行資料合成、合成資料的評估,以及提升開發者隱私增強相關領域的研究效率。


  ### [**🚀 Get Started 入門指南**](https://nics-tw.github.io/petsard/docs/get-started/)
  - Quick installation guide and basic usage examples
  - Complete framework structure and configuration details
  - 快速安裝指引與基本使用範例
  - 完整框架結構與設定說明

  ### [**📝 Tutorial 教學**](https://nics-tw.github.io/petsard/docs/tutorial/)

  - Practical examples from basic to advanced usage
  - Guidance and Colab demo for common use cases
  - 從基礎到進階的實作範例
  - 提供常見使用情境的說明與 Colab 展示

    #### [**⚙️ YAML Configuration YAML 設定**](https://nics-tw.github.io/petsard/docs/tutorial/yaml-config)

    - Comprehensive configuration writing guide
    - Experiment workflow and parameter settings
    - 完整的設定檔撰寫指南
    - 實驗流程與參數設定詳解

  ### [**🔬 API Documentation API 文件**](https://nics-tw.github.io/petsard/docs/api/)

  - Detailed technical documentation for modules and components
  - Covers configuration, execution, pipeline components, and data management
  - 模組與元件的詳細技術文件
  - 涵蓋設定、執行、管線組件與資料管理

## [**ℹ️ About 關於**](https://nics-tw.github.io/petsard/about/)

- Project background and license information
- Academic citations and related literature
- 專案背景與授權資訊
- 學術引用與相關文獻
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "petsard",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.10",
    "maintainer_email": null,
    "keywords": "PET, anonymization, data evaluation, data generation, data preprocessing, data science, differential privacy, machine learning, petsard, privacy, privacy enhancing technologies, synthetic data",
    "author": null,
    "author_email": "matheme-justyn <matheme.justyn@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/35/0e/3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72/petsard-1.5.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img width=75% src=\"https://github.com/nics-tw/petsard/blob/main/.github/assets/PETsARD-logo.png\"></p>\n\n![Python 3.10](https://img.shields.io/badge/python-v3.10-blue.svg)\n![Python 3.11](https://img.shields.io/badge/python-v3.11-blue.svg)\n![Contributions welcome](https://img.shields.io/badge/contributions-welcome-orange.svg)\n![PyPI - Status](https://img.shields.io/pypi/status/petsard)\n\n`PETsARD` (Privacy Enhancing Technologies Analysis, Research, and Development, /p\u0259\u02c8t\u0251rd/) is a Python library for facilitating data generation algorithm and their evaluation processes.\n\nThe main functionalities include dataset description, various dataset generation algorithms, and the measurements on privacy protection and utility.\n\n`PETsARD`\uff08\u96b1\u79c1\u5f37\u5316\u6280\u8853\u5206\u6790\u3001\u7814\u7a76\u8207\u958b\u767c\uff09\u662f\u4e00\u5957\u70ba\u4e86\u4fc3\u9032\u8cc7\u6599\u751f\u6210\u6f14\u7b97\u6cd5\u53ca\u5176\u8a55\u4f30\u904e\u7a0b\u800c\u8a2d\u8a08\u7684 Python \u7a0b\u5f0f\u5eab\u3002\n\n\u5176\u4e3b\u8981\u529f\u80fd\u5305\u62ec\u63cf\u8ff0\u8cc7\u6599\u96c6\u3001\u57f7\u884c\u5404\u7a2e\u8cc7\u6599\u96c6\u751f\u6210\u7b97\u6cd5\uff0c\u4ee5\u53ca\u5c0d\u96b1\u79c1\u4fdd\u8b77\u548c\u6548\u7528\u9032\u884c\u6e2c\u91cf\u3002\n\n# **\ud83d\udcda Documentation \u6587\u4ef6**\n\n## [**\ud83c\udfe0 Main Site \u4e3b\u8981\u7db2\u7ad9: PETsARD**](https://nics-tw.github.io/petsard/)\n\n- Project homepage with overview and foundation information\n- \u5c08\u6848\u9996\u9801\uff0c\u63d0\u4f9b\u5c08\u6848\u6982\u89c0\u8207\u57fa\u790e\u8cc7\u8a0a\n\n## [**\ud83d\udcd6 Docs \u6587\u4ef6**](https://nics-tw.github.io/petsard/docs/)\n\n- The User Guide aims to assist developers in rapidly acquiring the necessary skills for utilising `PETsARD` in data synthesis, evaluating synthesized data, and enhancing the research efficiency in Privacy Enhancing Technologies-related fields.\n- \u4f7f\u7528\u8005\u6307\u5357\u65e8\u5728\u5e6b\u52a9\u958b\u767c\u8005\u8fc5\u901f\u7372\u5f97\u5fc5\u8981\u7684\u6280\u80fd\uff0c\u4ee5\u4f7f\u7528 `PETsARD` \u9032\u884c\u8cc7\u6599\u5408\u6210\u3001\u5408\u6210\u8cc7\u6599\u7684\u8a55\u4f30\uff0c\u4ee5\u53ca\u63d0\u5347\u958b\u767c\u8005\u96b1\u79c1\u589e\u5f37\u76f8\u95dc\u9818\u57df\u7684\u7814\u7a76\u6548\u7387\u3002\n\n\n  ### [**\ud83d\ude80 Get Started \u5165\u9580\u6307\u5357**](https://nics-tw.github.io/petsard/docs/get-started/)\n  - Quick installation guide and basic usage examples\n  - Complete framework structure and configuration details\n  - \u5feb\u901f\u5b89\u88dd\u6307\u5f15\u8207\u57fa\u672c\u4f7f\u7528\u7bc4\u4f8b\n  - \u5b8c\u6574\u6846\u67b6\u7d50\u69cb\u8207\u8a2d\u5b9a\u8aaa\u660e\n\n  ### [**\ud83d\udcdd Tutorial \u6559\u5b78**](https://nics-tw.github.io/petsard/docs/tutorial/)\n\n  - Practical examples from basic to advanced usage\n  - Guidance and Colab demo for common use cases\n  - \u5f9e\u57fa\u790e\u5230\u9032\u968e\u7684\u5be6\u4f5c\u7bc4\u4f8b\n  - \u63d0\u4f9b\u5e38\u898b\u4f7f\u7528\u60c5\u5883\u7684\u8aaa\u660e\u8207 Colab \u5c55\u793a\n\n    #### [**\u2699\ufe0f YAML Configuration YAML \u8a2d\u5b9a**](https://nics-tw.github.io/petsard/docs/tutorial/yaml-config)\n\n    - Comprehensive configuration writing guide\n    - Experiment workflow and parameter settings\n    - \u5b8c\u6574\u7684\u8a2d\u5b9a\u6a94\u64b0\u5beb\u6307\u5357\n    - \u5be6\u9a57\u6d41\u7a0b\u8207\u53c3\u6578\u8a2d\u5b9a\u8a73\u89e3\n\n  ### [**\ud83d\udd2c API Documentation API \u6587\u4ef6**](https://nics-tw.github.io/petsard/docs/api/)\n\n  - Detailed technical documentation for modules and components\n  - Covers configuration, execution, pipeline components, and data management\n  - \u6a21\u7d44\u8207\u5143\u4ef6\u7684\u8a73\u7d30\u6280\u8853\u6587\u4ef6\n  - \u6db5\u84cb\u8a2d\u5b9a\u3001\u57f7\u884c\u3001\u7ba1\u7dda\u7d44\u4ef6\u8207\u8cc7\u6599\u7ba1\u7406\n\n## [**\u2139\ufe0f About \u95dc\u65bc**](https://nics-tw.github.io/petsard/about/)\n\n- Project background and license information\n- Academic citations and related literature\n- \u5c08\u6848\u80cc\u666f\u8207\u6388\u6b0a\u8cc7\u8a0a\n- \u5b78\u8853\u5f15\u7528\u8207\u76f8\u95dc\u6587\u737b",
    "bugtrack_url": null,
    "license": null,
    "summary": "Facilitates data generation algorithm and their evaluation processes",
    "version": "1.5.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/nics-tw/petsard/issues",
        "Documentation": "https://nics-tw.github.io/petsard/",
        "Repository": "https://github.com/nics-tw/petsard"
    },
    "split_keywords": [
        "pet",
        " anonymization",
        " data evaluation",
        " data generation",
        " data preprocessing",
        " data science",
        " differential privacy",
        " machine learning",
        " petsard",
        " privacy",
        " privacy enhancing technologies",
        " synthetic data"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dbcf69abc1447c18caed5da996d47cd63c38b9e934b7cdb51d513a435850193e",
                "md5": "53a318728d0257fb022a4f26254594c8",
                "sha256": "ab453fa3c75d53f847ce4d0734f8e6795eb9c6daa6f5f4d88b9aa96bbfeb56ff"
            },
            "downloads": -1,
            "filename": "petsard-1.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "53a318728d0257fb022a4f26254594c8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.10",
            "size": 237954,
            "upload_time": "2025-07-24T06:30:40",
            "upload_time_iso_8601": "2025-07-24T06:30:40.505372Z",
            "url": "https://files.pythonhosted.org/packages/db/cf/69abc1447c18caed5da996d47cd63c38b9e934b7cdb51d513a435850193e/petsard-1.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "350e3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72",
                "md5": "3e111cee20edaa3dcb1c0a9ce406f9a1",
                "sha256": "39e11ee38d803abee64891b1782ceb75d18c34cd6d9804b56551f4e0fa7728f5"
            },
            "downloads": -1,
            "filename": "petsard-1.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3e111cee20edaa3dcb1c0a9ce406f9a1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.10",
            "size": 1615121,
            "upload_time": "2025-07-24T06:30:41",
            "upload_time_iso_8601": "2025-07-24T06:30:41.890029Z",
            "url": "https://files.pythonhosted.org/packages/35/0e/3f9e5c310bab29d8295474e02a9d4ab214325ea76c7f27d1221451867d72/petsard-1.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-24 06:30:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nics-tw",
    "github_project": "petsard",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "petsard"
}
        
Elapsed time: 0.40926s