phd-ms


Namephd-ms JSON
Version 0.0.10 PyPI version JSON
download
home_pageNone
SummaryIdentifying multiscale tissue domains for spatial transcriptomic data using persistent homology.
upload_time2025-07-25 17:08:49
maintainerNone
docs_urlNone
authorPerry Beamer
requires_python>=3.7
licenseMIT License
keywords multiscale domains spatial transcriptomics topological data analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# PHD-MS: Persistent Homology for Domains at Multiple Scales

Multiscale domain identification for spatial transcriptomic data.


## Installation

Simply install with pip:


    pip install phd-ms

Or install from source by downloading, cd to this directory, using:
     
    pip install .

## Usage/Examples

Detailed jupyter notebook tutorials are available in the examples folder. 
Or simply download the file titled 'point_and_click.py' and run the file to use our clickable graphical interface. When using the point_and_click.py interface, update the directory where your data is stored by changing this line:
```python
DATA = '/home/pbeamer/Documents/graphst/visium_hne_graphst'
```

Here we'll show a simple example with Visium DLPFC data, using default parameters.
First, import necessary components.
```python
import phd-ms
import scanpy
```
Preprocessing steps here (note that we assume a spatially-aware embedding has already been computed for your data):
```python
INPUT_FILE= '/home/pbeamer/Documents/graphst/adata_151673
phd_ms.tl.preprocess_leiden(INPUT_FILE,output_file=INPUT_FILE)
```
Compute persistent homology and plot 10 most prominent multiscale domains:
```python
cluster_complex,clusterings= phd_ms.tl.cluster_filtration(adata)
phd_ms.tl.map_multiscale(adata.obsm['spatial'],cluster_complex,clusterings,num_domains=10)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "phd-ms",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "multiscale domains, spatial transcriptomics, topological data analysis",
    "author": "Perry Beamer",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e0/6a/1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0/phd_ms-0.0.10.tar.gz",
    "platform": null,
    "description": "\n# PHD-MS: Persistent Homology for Domains at Multiple Scales\n\nMultiscale domain identification for spatial transcriptomic data.\n\n\n## Installation\n\nSimply install with pip:\n\n\n    pip install phd-ms\n\nOr install from source by downloading, cd to this directory, using:\n     \n    pip install .\n\n## Usage/Examples\n\nDetailed jupyter notebook tutorials are available in the examples folder. \nOr simply download the file titled 'point_and_click.py' and run the file to use our clickable graphical interface. When using the point_and_click.py interface, update the directory where your data is stored by changing this line:\n```python\nDATA = '/home/pbeamer/Documents/graphst/visium_hne_graphst'\n```\n\nHere we'll show a simple example with Visium DLPFC data, using default parameters.\nFirst, import necessary components.\n```python\nimport phd-ms\nimport scanpy\n```\nPreprocessing steps here (note that we assume a spatially-aware embedding has already been computed for your data):\n```python\nINPUT_FILE= '/home/pbeamer/Documents/graphst/adata_151673\nphd_ms.tl.preprocess_leiden(INPUT_FILE,output_file=INPUT_FILE)\n```\nCompute persistent homology and plot 10 most prominent multiscale domains:\n```python\ncluster_complex,clusterings= phd_ms.tl.cluster_filtration(adata)\nphd_ms.tl.map_multiscale(adata.obsm['spatial'],cluster_complex,clusterings,num_domains=10)\n```\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Identifying multiscale tissue domains for spatial transcriptomic data using persistent homology.",
    "version": "0.0.10",
    "project_urls": null,
    "split_keywords": [
        "multiscale domains",
        " spatial transcriptomics",
        " topological data analysis"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9203759ac0763745130419b6416091d0dd6bd31fed280d5b1c81fc6f8a782be8",
                "md5": "180c485cfa7725a05424e94fbaa60448",
                "sha256": "f0775806f22e75798bcdedfc296d2ffea711bae0f5d108dff5cb8850fdb6af09"
            },
            "downloads": -1,
            "filename": "phd_ms-0.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "180c485cfa7725a05424e94fbaa60448",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10506,
            "upload_time": "2025-07-25T17:08:48",
            "upload_time_iso_8601": "2025-07-25T17:08:48.303169Z",
            "url": "https://files.pythonhosted.org/packages/92/03/759ac0763745130419b6416091d0dd6bd31fed280d5b1c81fc6f8a782be8/phd_ms-0.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e06a1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0",
                "md5": "9d8f708c4eff84d5c91d688e91a9650f",
                "sha256": "03760c332ca1c1467b03c1fb40d132c036c864d76770ea0f026006671638b158"
            },
            "downloads": -1,
            "filename": "phd_ms-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "9d8f708c4eff84d5c91d688e91a9650f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 10062,
            "upload_time": "2025-07-25T17:08:49",
            "upload_time_iso_8601": "2025-07-25T17:08:49.499038Z",
            "url": "https://files.pythonhosted.org/packages/e0/6a/1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0/phd_ms-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 17:08:49",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "phd-ms"
}
        
Elapsed time: 0.90461s