# PHD-MS: Persistent Homology for Domains at Multiple Scales
Multiscale domain identification for spatial transcriptomic data.
## Installation
Simply install with pip:
pip install phd-ms
Or install from source by downloading, cd to this directory, using:
pip install .
## Usage/Examples
Detailed jupyter notebook tutorials are available in the examples folder.
Or simply download the file titled 'point_and_click.py' and run the file to use our clickable graphical interface. When using the point_and_click.py interface, update the directory where your data is stored by changing this line:
```python
DATA = '/home/pbeamer/Documents/graphst/visium_hne_graphst'
```
Here we'll show a simple example with Visium DLPFC data, using default parameters.
First, import necessary components.
```python
import phd-ms
import scanpy
```
Preprocessing steps here (note that we assume a spatially-aware embedding has already been computed for your data):
```python
INPUT_FILE= '/home/pbeamer/Documents/graphst/adata_151673
phd_ms.tl.preprocess_leiden(INPUT_FILE,output_file=INPUT_FILE)
```
Compute persistent homology and plot 10 most prominent multiscale domains:
```python
cluster_complex,clusterings= phd_ms.tl.cluster_filtration(adata)
phd_ms.tl.map_multiscale(adata.obsm['spatial'],cluster_complex,clusterings,num_domains=10)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "phd-ms",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "multiscale domains, spatial transcriptomics, topological data analysis",
"author": "Perry Beamer",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/e0/6a/1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0/phd_ms-0.0.10.tar.gz",
"platform": null,
"description": "\n# PHD-MS: Persistent Homology for Domains at Multiple Scales\n\nMultiscale domain identification for spatial transcriptomic data.\n\n\n## Installation\n\nSimply install with pip:\n\n\n pip install phd-ms\n\nOr install from source by downloading, cd to this directory, using:\n \n pip install .\n\n## Usage/Examples\n\nDetailed jupyter notebook tutorials are available in the examples folder. \nOr simply download the file titled 'point_and_click.py' and run the file to use our clickable graphical interface. When using the point_and_click.py interface, update the directory where your data is stored by changing this line:\n```python\nDATA = '/home/pbeamer/Documents/graphst/visium_hne_graphst'\n```\n\nHere we'll show a simple example with Visium DLPFC data, using default parameters.\nFirst, import necessary components.\n```python\nimport phd-ms\nimport scanpy\n```\nPreprocessing steps here (note that we assume a spatially-aware embedding has already been computed for your data):\n```python\nINPUT_FILE= '/home/pbeamer/Documents/graphst/adata_151673\nphd_ms.tl.preprocess_leiden(INPUT_FILE,output_file=INPUT_FILE)\n```\nCompute persistent homology and plot 10 most prominent multiscale domains:\n```python\ncluster_complex,clusterings= phd_ms.tl.cluster_filtration(adata)\nphd_ms.tl.map_multiscale(adata.obsm['spatial'],cluster_complex,clusterings,num_domains=10)\n```\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Identifying multiscale tissue domains for spatial transcriptomic data using persistent homology.",
"version": "0.0.10",
"project_urls": null,
"split_keywords": [
"multiscale domains",
" spatial transcriptomics",
" topological data analysis"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9203759ac0763745130419b6416091d0dd6bd31fed280d5b1c81fc6f8a782be8",
"md5": "180c485cfa7725a05424e94fbaa60448",
"sha256": "f0775806f22e75798bcdedfc296d2ffea711bae0f5d108dff5cb8850fdb6af09"
},
"downloads": -1,
"filename": "phd_ms-0.0.10-py3-none-any.whl",
"has_sig": false,
"md5_digest": "180c485cfa7725a05424e94fbaa60448",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 10506,
"upload_time": "2025-07-25T17:08:48",
"upload_time_iso_8601": "2025-07-25T17:08:48.303169Z",
"url": "https://files.pythonhosted.org/packages/92/03/759ac0763745130419b6416091d0dd6bd31fed280d5b1c81fc6f8a782be8/phd_ms-0.0.10-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e06a1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0",
"md5": "9d8f708c4eff84d5c91d688e91a9650f",
"sha256": "03760c332ca1c1467b03c1fb40d132c036c864d76770ea0f026006671638b158"
},
"downloads": -1,
"filename": "phd_ms-0.0.10.tar.gz",
"has_sig": false,
"md5_digest": "9d8f708c4eff84d5c91d688e91a9650f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 10062,
"upload_time": "2025-07-25T17:08:49",
"upload_time_iso_8601": "2025-07-25T17:08:49.499038Z",
"url": "https://files.pythonhosted.org/packages/e0/6a/1ac6101c6a2a4d54b359067fc825d515d5b7c02eead0bd8496e3aecb30d0/phd_ms-0.0.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-25 17:08:49",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "phd-ms"
}