# PhD-utils
For people that have to compute and store a large variety of data and/or perform statistical inference.
Check the [tidypath and PhD-utils slides](https://github.com/medinajorge/PhD-utils/blob/master/tidypath_and_phdu.odp) for an overview.
## Keep your files tidy!
Don't spend time creating directories, deciding filenames, saving, loading, etc. Decorators `savefig` & `savedata` will do it for you with optimal compression. More info at the `tidypath` [repository](https://github.com/medinajorge/tidypath).
## Estimate confidence intervals
The module `phdu.resample` allows calls to the `resample` [R package](https://cran.r-project.org/web/packages/resample/resample.pdf).
- Provides CI and permutation tests.
- CIs can account narrowness bias, skewness and other errors in CI estimation, as indicated in the [article](https://arxiv.org/abs/1411.5279)
- Alternatively, use `phdu.stats.bootstrap` for numba-accelerated computation (does not call `resample`).
## Bootstrap-based power analysis.
Calculate the power for accepting H0 and estimate the needed sample size.
Function `power_analysis` in `phdu.stats.bootstrap` follows Efron-Tshibirani: An introduction to the bootstrap, p. 381-384.
## Numba-accelerated permutation tests
Module `phdu.stats.tests.permutation`.
- Permutation tests for any statistic.
- Includes paired and block cases.
## Demo
- [tidypath and PhD-utils slides](https://github.com/medinajorge/PhD-utils/blob/master/tidypath_and_phdu.odp): instructions and use cases.
- [Example notebook](https://github.com/medinajorge/PhD-utils/blob/master/tests/Example.ipynb)
## Documentation
[Github pages](https://medinajorge.github.io/PhD-utils/phdu.html)
## Install
- For the R compatible installation first install R:
```conda install -c conda-forge r r-essentials r-base```
- Install with dependencies:
```pip install phdu[dependencies]```
Where `dependencies` can be `base` (recommended), `all`, `r` (needed for `resample` to work), `statsmodels`, `matplotlib` or `plotly`.
Raw data
{
"_id": null,
"home_page": "https://github.com/medinajorge/PhD-utils",
"name": "phdu",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": null,
"keywords": "science, statistics, tidy, project organization, project, organization, path, storage",
"author": "Jorge Medina Hern\u00e1ndez",
"author_email": "medinahdezjorge@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/83/a6/e5e01d062ea2ed6a0bb8cba2c2685a4b1adccb403c9cf3e468c73dde9bf7/phdu-3.0.2.tar.gz",
"platform": null,
"description": "# PhD-utils\n\nFor people that have to compute and store a large variety of data and/or perform statistical inference.\nCheck the [tidypath and PhD-utils slides](https://github.com/medinajorge/PhD-utils/blob/master/tidypath_and_phdu.odp) for an overview.\n\n## Keep your files tidy!\n\nDon't spend time creating directories, deciding filenames, saving, loading, etc. Decorators `savefig` & `savedata` will do it for you with optimal compression. More info at the `tidypath` [repository](https://github.com/medinajorge/tidypath).\n\n## Estimate confidence intervals\nThe module `phdu.resample` allows calls to the `resample` [R package](https://cran.r-project.org/web/packages/resample/resample.pdf).\n- Provides CI and permutation tests.\n- CIs can account narrowness bias, skewness and other errors in CI estimation, as indicated in the [article](https://arxiv.org/abs/1411.5279)\n- Alternatively, use `phdu.stats.bootstrap` for numba-accelerated computation (does not call `resample`).\n\n## Bootstrap-based power analysis.\nCalculate the power for accepting H0 and estimate the needed sample size.\nFunction `power_analysis` in `phdu.stats.bootstrap` follows Efron-Tshibirani: An introduction to the bootstrap, p. 381-384.\n\n## Numba-accelerated permutation tests\nModule `phdu.stats.tests.permutation`.\n- Permutation tests for any statistic.\n- Includes paired and block cases.\n\n## Demo\n- [tidypath and PhD-utils slides](https://github.com/medinajorge/PhD-utils/blob/master/tidypath_and_phdu.odp): instructions and use cases.\n- [Example notebook](https://github.com/medinajorge/PhD-utils/blob/master/tests/Example.ipynb)\n\n## Documentation\n[Github pages](https://medinajorge.github.io/PhD-utils/phdu.html)\n\n## Install\n- For the R compatible installation first install R:\n\n ```conda install -c conda-forge r r-essentials r-base```\n\n- Install with dependencies:\n\n ```pip install phdu[dependencies]```\n\n Where `dependencies` can be `base` (recommended), `all`, `r` (needed for `resample` to work), `statsmodels`, `matplotlib` or `plotly`.\n",
"bugtrack_url": null,
"license": null,
"summary": "Automatically store/load data in a tidy, efficient way. Includes functions for data visualization and analysis.",
"version": "3.0.2",
"project_urls": {
"Download": "https://github.com/medinajorge/PhD-utils/archive/refs/tags/v2.6.7.tar.gz",
"Homepage": "https://github.com/medinajorge/PhD-utils"
},
"split_keywords": [
"science",
" statistics",
" tidy",
" project organization",
" project",
" organization",
" path",
" storage"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "83a6e5e01d062ea2ed6a0bb8cba2c2685a4b1adccb403c9cf3e468c73dde9bf7",
"md5": "a02551836a5f30bfeda342401aadf781",
"sha256": "53f878a6a5fb27a1f4222f3f6da333d5f5a920c66fa2b25f2c6e2cb8fd3997b8"
},
"downloads": -1,
"filename": "phdu-3.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a02551836a5f30bfeda342401aadf781",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3",
"size": 58895,
"upload_time": "2025-07-19T07:00:54",
"upload_time_iso_8601": "2025-07-19T07:00:54.179239Z",
"url": "https://files.pythonhosted.org/packages/83/a6/e5e01d062ea2ed6a0bb8cba2c2685a4b1adccb403c9cf3e468c73dde9bf7/phdu-3.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-19 07:00:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "medinajorge",
"github_project": "PhD-utils",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "phdu"
}