phdu


Namephdu JSON
Version 2.8.6 PyPI version JSON
download
home_pagehttps://github.com/medinajorge/PhD-utils
SummaryAutomatically store/load data in a tidy, efficient way. Includes functions for data visualization and analysis.
upload_time2024-12-16 10:36:32
maintainerNone
docs_urlNone
authorJorge Medina Hernández
requires_python>=3
licenseNone
keywords science statistics tidy project organization project organization path storage
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PhD-utils

For people that have to compute and store a large variety of data and/or perform statistical inference.

## Keep your files tidy!

Don't spend time creating directories, deciding filenames, saving, loading, etc. Decorators `savefig` & `savedata` will do it for you with optimal compression. More info at the `tidypath` [repository](https://github.com/medinajorge/tidypath).

## Estimate confidence intervals
The module `phdu.resample` allows calls to the `resample` [R package](https://cran.r-project.org/web/packages/resample/resample.pdf).
- Provides CI and permutation tests.
- CIs can account narrowness bias, skewness and other errors in CI estimation, as indicated in the [article](https://arxiv.org/abs/1411.5279)
- Alternatively, use `phdu.stats.bootstrap` for numba-accelerated computation (does not call `resample`).

## Bootstrap-based power analysis.
Calculate the power for accepting H0 and estimate the needed sample size.
Function `power_analysis` in `phdu.stats.bootstrap` follows Efron-Tshibirani: An introduction to the bootstrap,  p. 381-384.

## Numba-accelerated permutation tests
Module `phdu.stats.tests.permutation`. 
- Permutation tests for any statistic. 
- Includes paired and block cases.

## Demo
Please check the [example notebook](https://github.com/medinajorge/PhD-utils/blob/master/tests/Example.ipynb).

## Documentation
[Github pages](https://medinajorge.github.io/PhD-utils/phdu.html)

## Install
- For the R compatible installation first install R:

  ```conda install -c conda-forge r r-essentials r-base```
  
- Install with dependencies:

  ```pip install phdu[dependencies]```
  
  Where `dependencies` can be `base` (recommended), `all`, `r` (needed for `resample` to work), `statsmodels`, `matplotlib` or `plotly`.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/medinajorge/PhD-utils",
    "name": "phdu",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "science, statistics, tidy, project organization, project, organization, path, storage",
    "author": "Jorge Medina Hern\u00e1ndez",
    "author_email": "medinahdezjorge@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/21/66/3ddc8c19474578d8d04d7d772ca8ef97fe1c073e01efca15b686fd498b32/phdu-2.8.6.tar.gz",
    "platform": null,
    "description": "# PhD-utils\n\nFor people that have to compute and store a large variety of data and/or perform statistical inference.\n\n## Keep your files tidy!\n\nDon't spend time creating directories, deciding filenames, saving, loading, etc. Decorators `savefig` & `savedata` will do it for you with optimal compression. More info at the `tidypath` [repository](https://github.com/medinajorge/tidypath).\n\n## Estimate confidence intervals\nThe module `phdu.resample` allows calls to the `resample` [R package](https://cran.r-project.org/web/packages/resample/resample.pdf).\n- Provides CI and permutation tests.\n- CIs can account narrowness bias, skewness and other errors in CI estimation, as indicated in the [article](https://arxiv.org/abs/1411.5279)\n- Alternatively, use `phdu.stats.bootstrap` for numba-accelerated computation (does not call `resample`).\n\n## Bootstrap-based power analysis.\nCalculate the power for accepting H0 and estimate the needed sample size.\nFunction `power_analysis` in `phdu.stats.bootstrap` follows Efron-Tshibirani: An introduction to the bootstrap,  p. 381-384.\n\n## Numba-accelerated permutation tests\nModule `phdu.stats.tests.permutation`. \n- Permutation tests for any statistic. \n- Includes paired and block cases.\n\n## Demo\nPlease check the [example notebook](https://github.com/medinajorge/PhD-utils/blob/master/tests/Example.ipynb).\n\n## Documentation\n[Github pages](https://medinajorge.github.io/PhD-utils/phdu.html)\n\n## Install\n- For the R compatible installation first install R:\n\n  ```conda install -c conda-forge r r-essentials r-base```\n  \n- Install with dependencies:\n\n  ```pip install phdu[dependencies]```\n  \n  Where `dependencies` can be `base` (recommended), `all`, `r` (needed for `resample` to work), `statsmodels`, `matplotlib` or `plotly`.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Automatically store/load data in a tidy, efficient way. Includes functions for data visualization and analysis.",
    "version": "2.8.6",
    "project_urls": {
        "Download": "https://github.com/medinajorge/PhD-utils/archive/refs/tags/v2.6.7.tar.gz",
        "Homepage": "https://github.com/medinajorge/PhD-utils"
    },
    "split_keywords": [
        "science",
        " statistics",
        " tidy",
        " project organization",
        " project",
        " organization",
        " path",
        " storage"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "21663ddc8c19474578d8d04d7d772ca8ef97fe1c073e01efca15b686fd498b32",
                "md5": "7af63ae47223db19dc0cabbb6068b91d",
                "sha256": "9d1f9b164be27f6aa53736779a11625a787213f5ee46ed1ae8970bb1eea99195"
            },
            "downloads": -1,
            "filename": "phdu-2.8.6.tar.gz",
            "has_sig": false,
            "md5_digest": "7af63ae47223db19dc0cabbb6068b91d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 57482,
            "upload_time": "2024-12-16T10:36:32",
            "upload_time_iso_8601": "2024-12-16T10:36:32.085633Z",
            "url": "https://files.pythonhosted.org/packages/21/66/3ddc8c19474578d8d04d7d772ca8ef97fe1c073e01efca15b686fd498b32/phdu-2.8.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-16 10:36:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "medinajorge",
    "github_project": "PhD-utils",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "phdu"
}
        
Elapsed time: 0.44197s