# phenocv
## Introduction
**phenocv** is a toolkits for rice high-throught phenotyping using computer vision.
**phenocv** is still in early development stage, and more features will be added in the future.
For label-studio semi-automatic annotation, please refer to [playground](https://github.com/open-mmlab/playground).
For mmdetection training, please refer to [mmdetection](https://github.com/open-mmlab/mmdetection).
For yolo training, please refer to [Ultralytics](https://github.com/ultralytics/ultralytics).
Support for mmdetection and label-studio will be added in the future.
## Installation
Before install the package, make sure you have installed [pytorch](https://pytorch.org/get-started/locally/) and install in the python environment with python>=3.8.
### Install with pip:
```shell
pip install phenocv
```
### Install in editable mode, allow changes to the source code to be immediately available:
```shell
git clone https://github.com/r1cheu/phenocv.git
cd phenocv
pip install -e .
```
## Tutorial
| Getting Start | [![Open In GitHub](https://img.shields.io/badge/Open%20in-GitHub-blue?logo=GitHub)](https://github.com/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
## License
This project is released under the [AGPL 3.0 license](LICENSE).
## Citation
If you find this project useful in your research, please consider cite:
```Bibtex
@misc{2023phenocv,
title={Rice high-throught phenotyping computer vision toolkits},
author={RuLei Chen},
howpublished = {\url{https://github.com/r1cheu/phenocv}},
year={2023}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "phenocv",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "RuLei Chen <chenrulei@cemps.ac.cn>",
"keywords": "machine-learning, deep-learning, computer-vision, ML, DL, AI, YOLO",
"author": null,
"author_email": "RuLei Chen <chenrulei@cemps.ac.cn>",
"download_url": "https://files.pythonhosted.org/packages/f5/97/0d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304/phenocv-0.1.4.tar.gz",
"platform": null,
"description": "# phenocv\n\n## Introduction\n\n**phenocv** is a toolkits for rice high-throught phenotyping using computer vision.\n\n**phenocv** is still in early development stage, and more features will be added in the future.\n\nFor label-studio semi-automatic annotation, please refer to [playground](https://github.com/open-mmlab/playground).\n\nFor mmdetection training, please refer to [mmdetection](https://github.com/open-mmlab/mmdetection).\n\nFor yolo training, please refer to [Ultralytics](https://github.com/ultralytics/ultralytics).\n\nSupport for mmdetection and label-studio will be added in the future.\n\n## Installation\n\nBefore install the package, make sure you have installed [pytorch](https://pytorch.org/get-started/locally/) and install in the python environment with python>=3.8.\n\n### Install with pip:\n\n```shell\npip install phenocv\n```\n\n### Install in editable mode, allow changes to the source code to be immediately available:\n\n```shell\ngit clone https://github.com/r1cheu/phenocv.git\ncd phenocv\npip install -e .\n```\n\n## Tutorial\n\n| Getting Start | [![Open In GitHub](https://img.shields.io/badge/Open%20in-GitHub-blue?logo=GitHub)](https://github.com/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) |\n| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n\n## License\n\nThis project is released under the [AGPL 3.0 license](LICENSE).\n\n## Citation\n\nIf you find this project useful in your research, please consider cite:\n\n```Bibtex\n@misc{2023phenocv,\n title={Rice high-throught phenotyping computer vision toolkits},\n author={RuLei Chen},\n howpublished = {\\url{https://github.com/r1cheu/phenocv}},\n year={2023}\n}\n```\n",
"bugtrack_url": null,
"license": "AGPL-3.0",
"summary": "Rice High Throughput Phenotyping Computer Vision Toolkit",
"version": "0.1.4",
"project_urls": null,
"split_keywords": [
"machine-learning",
" deep-learning",
" computer-vision",
" ml",
" dl",
" ai",
" yolo"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e900225d0d2d0032646f71413cafdff70cba4c739303fd01c58b972e00cae216",
"md5": "a9b9cced82dc591ff2531b672266deb9",
"sha256": "4369eaff4c056da5309c7c11508d9a9c285e47c7963c249dbe18b3908e43a677"
},
"downloads": -1,
"filename": "phenocv-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a9b9cced82dc591ff2531b672266deb9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 63841,
"upload_time": "2024-04-23T05:27:11",
"upload_time_iso_8601": "2024-04-23T05:27:11.461702Z",
"url": "https://files.pythonhosted.org/packages/e9/00/225d0d2d0032646f71413cafdff70cba4c739303fd01c58b972e00cae216/phenocv-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f5970d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304",
"md5": "fbe4b32d105506ead93e4c4170c87916",
"sha256": "38831f59228f5a50cd3effc6ea5b6c5181309cb19423d92dca5c2f9e8b053aba"
},
"downloads": -1,
"filename": "phenocv-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "fbe4b32d105506ead93e4c4170c87916",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 48750,
"upload_time": "2024-04-23T05:27:13",
"upload_time_iso_8601": "2024-04-23T05:27:13.255572Z",
"url": "https://files.pythonhosted.org/packages/f5/97/0d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304/phenocv-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-23 05:27:13",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "phenocv"
}