phenocv


Namephenocv JSON
Version 0.1.4 PyPI version JSON
download
home_pageNone
SummaryRice High Throughput Phenotyping Computer Vision Toolkit
upload_time2024-04-23 05:27:13
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseAGPL-3.0
keywords machine-learning deep-learning computer-vision ml dl ai yolo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # phenocv

## Introduction

**phenocv** is a toolkits for rice high-throught phenotyping using computer vision.

**phenocv** is still in early development stage, and more features will be added in the future.

For label-studio semi-automatic annotation, please refer to [playground](https://github.com/open-mmlab/playground).

For mmdetection training, please refer to [mmdetection](https://github.com/open-mmlab/mmdetection).

For yolo training, please refer to [Ultralytics](https://github.com/ultralytics/ultralytics).

Support for mmdetection and label-studio will be added in the future.

## Installation

Before install the package, make sure you have installed [pytorch](https://pytorch.org/get-started/locally/) and install in the python environment with python>=3.8.

### Install with pip:

```shell
pip install phenocv
```

### Install in editable mode, allow changes to the source code to be immediately available:

```shell
git clone https://github.com/r1cheu/phenocv.git
cd phenocv
pip install -e .
```

## Tutorial

| Getting Start | [![Open In GitHub](https://img.shields.io/badge/Open%20in-GitHub-blue?logo=GitHub)](https://github.com/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |

## License

This project is released under the [AGPL 3.0 license](LICENSE).

## Citation

If you find this project useful in your research, please consider cite:

```Bibtex
@misc{2023phenocv,
    title={Rice high-throught phenotyping computer vision toolkits},
    author={RuLei Chen},
    howpublished = {\url{https://github.com/r1cheu/phenocv}},
    year={2023}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "phenocv",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "RuLei Chen <chenrulei@cemps.ac.cn>",
    "keywords": "machine-learning, deep-learning, computer-vision, ML, DL, AI, YOLO",
    "author": null,
    "author_email": "RuLei Chen <chenrulei@cemps.ac.cn>",
    "download_url": "https://files.pythonhosted.org/packages/f5/97/0d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304/phenocv-0.1.4.tar.gz",
    "platform": null,
    "description": "# phenocv\n\n## Introduction\n\n**phenocv** is a toolkits for rice high-throught phenotyping using computer vision.\n\n**phenocv** is still in early development stage, and more features will be added in the future.\n\nFor label-studio semi-automatic annotation, please refer to [playground](https://github.com/open-mmlab/playground).\n\nFor mmdetection training, please refer to [mmdetection](https://github.com/open-mmlab/mmdetection).\n\nFor yolo training, please refer to [Ultralytics](https://github.com/ultralytics/ultralytics).\n\nSupport for mmdetection and label-studio will be added in the future.\n\n## Installation\n\nBefore install the package, make sure you have installed [pytorch](https://pytorch.org/get-started/locally/) and install in the python environment with python>=3.8.\n\n### Install with pip:\n\n```shell\npip install phenocv\n```\n\n### Install in editable mode, allow changes to the source code to be immediately available:\n\n```shell\ngit clone https://github.com/r1cheu/phenocv.git\ncd phenocv\npip install -e .\n```\n\n## Tutorial\n\n| Getting Start | [![Open In GitHub](https://img.shields.io/badge/Open%20in-GitHub-blue?logo=GitHub)](https://github.com/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/r1cheu/phenocv/blob/main/tutorial/getting_start.ipynb) |\n| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n\n## License\n\nThis project is released under the [AGPL 3.0 license](LICENSE).\n\n## Citation\n\nIf you find this project useful in your research, please consider cite:\n\n```Bibtex\n@misc{2023phenocv,\n    title={Rice high-throught phenotyping computer vision toolkits},\n    author={RuLei Chen},\n    howpublished = {\\url{https://github.com/r1cheu/phenocv}},\n    year={2023}\n}\n```\n",
    "bugtrack_url": null,
    "license": "AGPL-3.0",
    "summary": "Rice High Throughput Phenotyping Computer Vision Toolkit",
    "version": "0.1.4",
    "project_urls": null,
    "split_keywords": [
        "machine-learning",
        " deep-learning",
        " computer-vision",
        " ml",
        " dl",
        " ai",
        " yolo"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e900225d0d2d0032646f71413cafdff70cba4c739303fd01c58b972e00cae216",
                "md5": "a9b9cced82dc591ff2531b672266deb9",
                "sha256": "4369eaff4c056da5309c7c11508d9a9c285e47c7963c249dbe18b3908e43a677"
            },
            "downloads": -1,
            "filename": "phenocv-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a9b9cced82dc591ff2531b672266deb9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 63841,
            "upload_time": "2024-04-23T05:27:11",
            "upload_time_iso_8601": "2024-04-23T05:27:11.461702Z",
            "url": "https://files.pythonhosted.org/packages/e9/00/225d0d2d0032646f71413cafdff70cba4c739303fd01c58b972e00cae216/phenocv-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f5970d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304",
                "md5": "fbe4b32d105506ead93e4c4170c87916",
                "sha256": "38831f59228f5a50cd3effc6ea5b6c5181309cb19423d92dca5c2f9e8b053aba"
            },
            "downloads": -1,
            "filename": "phenocv-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "fbe4b32d105506ead93e4c4170c87916",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 48750,
            "upload_time": "2024-04-23T05:27:13",
            "upload_time_iso_8601": "2024-04-23T05:27:13.255572Z",
            "url": "https://files.pythonhosted.org/packages/f5/97/0d755d9464b9245d55393e18a2e69da97039acbceb4d3310bff0eb198304/phenocv-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-23 05:27:13",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "phenocv"
}
        
Elapsed time: 0.23710s